| Equipment Type        | Model:                            | Site          | # Required | Notes:                                                                                         | Number of years | Operating days<br>per year | Operating days | Runtime/Day<br>(hrs) | Hourly Fuel<br>Consumption<br>(L/hr) | Total fuel<br>consumption | Emission<br>coefficient<br>(kgCO2/unit) | Total CO2<br>emissions (kg) | Total CO2<br>emissions<br>(tonnes) |
|-----------------------|-----------------------------------|---------------|------------|------------------------------------------------------------------------------------------------|-----------------|----------------------------|----------------|----------------------|--------------------------------------|---------------------------|-----------------------------------------|-----------------------------|------------------------------------|
| Excavator:            | 470/349/PC 490                    | Twin Lakes    | 7          | 7 Crews, 1 per crew                                                                            | 1.5             | 312                        | 468            | 21                   | 35                                   | 2,407,860                 | 2.67                                    | 6,428,986                   | 6,429                              |
| Excavator:            | 336/290/PC 360                    | Twin Lakes    | 13         | 12 crews, 1 at crusher                                                                         | 1.5             | 312                        | 468            | 21                   | 25                                   | 3,194,100                 | 2.67                                    | 8,528,247                   | 8,528                              |
| Loading Unit:         | Cat 390/JD 870                    | Twin Lakes    | 2          | Main Quarry Ops - Loading Wiggles                                                              | 1.5             | 312                        | 468            | 21                   | 48                                   | 943,488                   | 2.67                                    | 2,519,113                   | 2,519                              |
| Shovel/Loading Unit : | CAT 6015B/Hitachi EX-1200/PC 1200 | Twin Lakes    | 1          | Main Quarry Ops - Loading Rigids                                                               | 1.5             | 312                        | 468            | 21                   | 85                                   | 835,380                   | 2.67                                    | 2,230,465                   | 2,230                              |
| Dozer:                | D8/D155/1050K                     | Twin Lakes    | 14         | 7 New Road Construction Crews<br>Running 2 Each                                                | 1.5             | 312                        | 468            | 21                   | 44                                   | 6,054,048                 | 2.67                                    | 16,164,308                  | 16,164                             |
| Dozer:                | D6/P65                            | Twin Lakes    | 5          | 5 Upgrading Crews Running 1 Each<br>Widening ROW and placing in new<br>ROW                     | 1.5             | 312                        | 468            | 21                   | 22                                   | 1,081,080                 | 2.67                                    | 2,886,484                   | 2,886                              |
| Roller:               | 10-Ton                            | Twin Lakes    | 12         | May be split between crews, not<br>necessarily 1 per crew?                                     | 1.5             | 312                        | 468            | 21                   | 15                                   | 1,769,040                 | 2.67                                    | 4,723,337                   | 4,723                              |
| Haul Truck:           | JD 460/Cat 740                    | Twin Lakes    | 8          | 4 New Road Construction crews<br>running 2 each                                                | 1.5             | 312                        | 468            | 21                   | 30                                   | 2,358,720                 | 2.67                                    | 6,297,782                   | 6,298                              |
| Haul Truck:           | Live Bottom Trailers              | Twin Lakes    | 4          | 4 trucks floating between 5 upgrading<br>crews as required                                     | 1.5             | 312                        | 468            | 21                   | 18                                   | 707,616                   | 2.67                                    | 1,889,335                   | 1,889                              |
| Haul Truck:           | CAT 777                           | Twin Lakes    | 6          | 3 New Road Construction crews<br>running 2 777s each                                           | 1.5             | 312                        | 468            | 21                   | 64                                   | 3,773,952                 | 2.67                                    | 10,076,452                  | 10,076                             |
| Concrete Truck:       |                                   | Twin Lakes    | 12         | Once Towers reached                                                                            | 1.5             | 312                        | 468            | 21                   | 18                                   | 2,122,848                 | 2.67                                    | 5,668,004                   | 5,668                              |
| Other:                | 1/2 Ton Pickup                    | Twin Lakes    | 30         | 2.5 per crew (foreman, surveyor,<br>labour crew floating), 2 for crusher, 2<br>for batch plant | 1.5             | 312                        | 468            | 21                   | 10                                   | 2,948,400                 | 2.67                                    | 7,872,228                   | 7,872                              |
| Other:                | Fuel Truck                        | Twin Lakes    | 6          | Site Wide                                                                                      | 1.5             | 312                        | 468            | 21                   | 15                                   | 884,520                   | 2.67                                    | 2,361,668                   | 2,362                              |
| Other:                | Maintenance Truck                 | Twin Lakes    | 6          | Site Wide                                                                                      | 1.5             | 312                        | 468            | 21                   | 15                                   | 884,520                   | 2.67                                    | 2,361,668                   | 2,362                              |
| Grader:               | 12M/672GP                         | Twin Lakes    | 5          | 1 per upgrading crew                                                                           | 1.5             | 312                        | 468            | 21                   | 16                                   | 786,240                   | 2.67                                    | 2,099,261                   | 2,099                              |
| Loader:               | CAT 988                           | Twin Lakes    | 4          | 1 at each quarry, 1 at crusher, 1 at<br>batch plant                                            | 1.5             | 312                        | 468            | 21                   | 40                                   | 1,572,480                 | 2.67                                    | 4,198,522                   | 4,199                              |
| Loader:               | CAT 980                           | Twin Lakes    | 1          | 1 at crusher                                                                                   | 1.5             | 312                        | 468            | 21                   | 22                                   | 216,216                   | 2.67                                    | 577,297                     | 577                                |
| Feller Buncher:       | CAT 522                           | Twin Lakes    | 6          | Site Wide                                                                                      | 1.5             | 312                        | 468            | 10.5                 | 36                                   | 1,061,424                 | 2.67                                    | 2,834,002                   | 2,834                              |
| Utility Loader:       | CAT 938                           | Twin Lakes    | 2          | Site Wide - Loading/Lifting, Spill Rock<br>Cleanup                                             | 1.5             | 312                        | 468            | 21                   | 8                                    | 157,248                   | 2.67                                    | 419,852                     | 420                                |
| Batch Plant:          |                                   | Twin Lakes    | 2          |                                                                                                | 1.5             | 312                        | 468            | 21                   |                                      |                           | 2.67                                    | -                           |                                    |
| Crusher:              |                                   | Twin Lakes    | 2          |                                                                                                | 1.5             | 312                        | 468            | 21                   |                                      | -                         | 2.67                                    | -                           | -                                  |
| Excavator:            | 470/349/PC 490                    | Port to plant | 3          | 1 per new road crew                                                                            | 1               | 312                        | 312            | 21                   | 35                                   | 687,960                   | 2.67                                    | 1,836,853                   | 1,837                              |
| Excavator:            | 336/290/PC 360                    | Port to plant | 7          | 6 crews with 1, 1 at crusher                                                                   | 1               | 312                        | 312            | 21                   | 25                                   | 1,146,600                 | 2.67                                    | 3,061,422                   | 3,061                              |
| Dozer:                | D8/D155/1050K                     | Port to plant | 6          | 2 per new road construction, mix of<br>spreading and stripping                                 | 1               | 312                        | 312            | 21                   | 44                                   | 1,729,728                 | 2.67                                    | 4,618,374                   | 4,618                              |
| Dozer:                | D6/P65                            | Port to plant | 3          | 1 per upgrading crew, stripping and<br>spreading on ROW widening                               | 1               | 312                        | 312            | 21                   | 22                                   | 432,432                   | 2.67                                    | 1,154,593                   | 1,155                              |
| Roller:               | 10-Ton                            | Port to plant | 6          | May be split between crews, not<br>necessarily 1 per crew?                                     | 1               | 312                        | 312            | 21                   | 15                                   | 589,680                   | 2.67                                    | 1,574,446                   | 1,574                              |
| Haul Truck:           | JD 460/Cat 740                    | Port to plant | 12         | 3 per new construction crew, 1 per<br>upgrading crew for widening and bad<br>areas             | 1               | 312                        | 312            | 21                   | 30                                   | 2,358,720                 | 2.67                                    | 6,297,782                   | 6,298                              |

| Haul Truck:               | e Bottom Trailers               | Port to plant | 6  | 2 per upgrading crew                                                        | 1 | 312 | 312 | 21   | 18 | 707 616   | 2 67 | 1 889 335  | 1 889  |
|---------------------------|---------------------------------|---------------|----|-----------------------------------------------------------------------------|---|-----|-----|------|----|-----------|------|------------|--------|
|                           |                                 |               | -  |                                                                             | - |     |     |      |    | ,         |      | _,,        | _,     |
| Other: 1/2 T              | ! Ton Pickup                    | Port to plant | 20 | 6 crews, each crew foreman,                                                 | 1 | 312 | 312 | 21   | 10 | 1,310,400 | 2.67 | 3,498,768  | 3,499  |
|                           |                                 |               |    | surveyor, labourer, 2 for crusher                                           |   |     |     |      |    |           |      |            |        |
| Other: Fuel               | el Truck                        | Port to plant | 2  | Site Wide                                                                   | 1 | 312 | 312 | 21   | 15 | 196,560   | 2.67 | 524,815    | 525    |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
| Other: Main               | intenance Truck                 | Port to plant | 2  | Site Wide                                                                   | 1 | 312 | 312 | 21   | 15 | 196,560   | 2.67 | 524,815    | 525    |
| Grader: 12M               | M/672GP or 14M                  | Port to plant | 3  | 1 per upgrading                                                             | 1 | 312 | 312 | 21   | 16 | 314,496   | 2.67 | 839,704    | 840    |
|                           |                                 |               |    | crew, maybe one                                                             |   |     |     |      |    |           |      |            |        |
|                           |                                 |               |    | existing roads?                                                             |   |     |     |      |    |           |      |            |        |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
| Loader: CAT               | T 988                           | Port to plant | 1  | 1 at crusher                                                                | 1 | 312 | 312 | 21   | 40 | 262,080   | 2.67 | 699,754    | 700    |
| Loader: CAT               | T 980                           | Port to plant | 1  | 1 at crusher                                                                | 1 | 312 | 312 | 21   | 22 | 144,144   | 2.67 | 384,864    | 385    |
|                           |                                 |               | -  |                                                                             |   |     |     |      |    |           |      |            |        |
| Feller Buncher: CAT !     | T 522                           | Port to plant | 6  | Site Wide                                                                   | 1 | 312 | 312 | 10.5 | 36 | 707,616   | 2.67 | 1,889,335  | 1,889  |
| Utility Loader: CAT       | T 938                           | Port to plant | 1  | Site Wide - Loading/Lifting, Spill Rock                                     | 1 | 312 | 312 | 21   | 8  | 52,416    | 2.67 | 139,951    | 140    |
|                           |                                 |               |    | Cleanup                                                                     |   |     |     |      |    |           |      |            |        |
| Crusher:                  |                                 | Port to plant | 1  |                                                                             | 1 | 312 | 312 | 10.5 |    | -         | 2.67 | -          | -      |
| Excavator: 470/           | D/349/PC 490                    | Roadworks     | 9  | 9 Crews, 1 per crew                                                         | 2 | 312 | 624 | 21   | 35 | 4,127,760 | 2.67 | 11,021,119 | 11,021 |
| 5                         | - /200 /00 200                  | Devel and a   | 47 | an a                                    | 2 | 242 | 634 | 24   | 25 | 5 500 200 | 2.67 | 44.000 704 | 44.070 |
| Excavator: 336/           | 5/290/PC 360                    | Roadworks     | 1/ | 16 crews, 1 at crusher                                                      | 2 | 312 | 624 | 21   | 25 | 5,569,200 | 2.67 | 14,869,764 | 14,870 |
| Loading Unit: Cat ?       | : 390/JD 870                    | Roadworks     | 5  | Main Quarry Ops - Loading Wiggles, 1                                        | 2 | 312 | 624 | 21   | 48 | 3,144,960 | 2.67 | 8,397,043  | 8,397  |
|                           |                                 |               |    | between crews for long reach SG<br>excavation                               |   |     |     |      |    |           |      |            |        |
|                           |                                 |               | -  |                                                                             | - |     |     |      |    |           |      |            |        |
| Shovel/Loading Unit : CAT | 1 6015B/Hitachi EX-1200/PC 1200 | Roadworks     | 1  | Main Quarry Ops - Loading Rigids                                            | 2 | 312 | 624 | 21   | 85 | 1,113,840 | 2.67 | 2,973,953  | 2,974  |
| Dozer: D8/E               | /D155/1050K                     | Roadworks     | 14 | 9 New Road Construction Crews                                               | 2 | 312 | 624 | 21   | 44 | 8,072,064 | 2.67 | 21,552,411 | 21,552 |
|                           |                                 |               |    | Running 7 Each                                                              |   |     |     |      |    |           |      |            |        |
| Dozer: D6/P               | /P65                            | Roadworks     | 11 | 5 Upgrading Crews Running 1 Each<br>Widening ROW and placing in new         | 2 | 312 | 624 | 21   | 22 | 3,171,168 | 2.67 | 8,467,019  | 8,467  |
|                           |                                 |               |    | ROW, 2 New Road Crews                                                       |   |     |     |      |    |           |      |            |        |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
| Roller: 10-Tr             | Ton                             | Roadworks     | 16 | May be split between crews, not                                             | 2 | 312 | 624 | 21   | 15 | 3,144,960 | 2.67 | 8,397,043  | 8,397  |
| Haul Truck: ID 4          | 460/Cat 740                     | Roadworks     | 10 | necessarily 1 per crew?                                                     | 2 | 212 | 624 | 21   | 30 | 3 931 200 | 2.67 | 10 496 304 | 10.496 |
|                           | 400/cat /40                     | nobuwork3     | 10 | running 2 each                                                              | 2 | 512 | 024 | 21   | 50 | 5,551,200 | 2.07 | 10,450,504 | 10,450 |
| Haul Truck: Live          | e Bottom Trailers               | Roadworks     | 6  | 6 trucks floating between 7 upgrading                                       | 2 | 312 | 624 | 21   | 18 | 1,415,232 | 2.67 | 3,778,669  | 3,779  |
|                           |                                 |               | -  | crews as required                                                           |   |     |     |      |    |           |      |            |        |
| Haul Truck: CAT           | T 777 or 775                    | Roadworks     | 8  | 4 New Road Construction crews<br>running 2 777s each                        | 2 | 312 | 624 | 21   | 64 | 6,709,248 | 2.67 | 17,913,692 | 17,914 |
| Concrete Truck:           |                                 | Roadworks     | 12 | •                                                                           | 2 | 312 | 624 | 21   | 18 | 2,830,464 | 2.67 | 7,557,339  | 7,557  |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
| Other: 1/2 T              | ? Ton Pickup                    | Roadworks     | 45 | 2.5 per crew (foreman, surveyor,<br>labour crew floating), 2 for crusher, 2 | 2 | 312 | 624 | 21   | 10 | 5,896,800 | 2.67 | 15,744,456 | 15,744 |
|                           |                                 |               |    | for batch plant                                                             |   |     |     |      |    |           |      |            |        |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
| Other: Fuel               | el Truck                        | Roadworks     | 6  | Site Wide                                                                   | 2 | 312 | 624 | 21   | 15 | 1,179,360 | 2.67 | 3,148,891  | 3,149  |
| Other: Mair               | intenance Truck                 | Roadworks     | 6  | Site Wide                                                                   | 2 | 312 | 624 | 21   | 15 | 1,179,360 | 2.67 | 3,148,891  | 3,149  |
|                           |                                 |               |    |                                                                             |   |     |     |      |    |           |      |            |        |
| Grader: 12M               | M/672GP                         | Roadworks     | 7  | 1 per upgrading crew                                                        | 2 | 312 | 624 | 21   | 16 | 1,467,648 | 2.67 | 3,918,620  | 3,919  |
| Loader: CAT               |                                 |               |    |                                                                             |   |     |     |      | 40 | 2 144 000 | 2.67 | 0 207 042  | 9 207  |
|                           | 1 988                           | Roadworks     | 6  | 1 at each quarry, 1 at crusher, 1 at                                        | 2 | 312 | 624 | 21   | 40 | 3,144,960 | 2.07 | 8,397,043  | 6,357  |
|                           | 1 988                           | Roadworks     | 6  | 1 at each quarry, 1 at crusher, 1 at<br>batch plant                         | 2 | 312 | 624 | 21   | 40 | 3,144,960 | 2.07 | 8,397,043  | 6,557  |

| Utility Loader:                    | CAT 938 | Roadworks           | 4          | Site Wide - Loading/Lifting, Spill Rock<br>Cleanup                                                                                                                                                                                      | 2 | 312 | 624 | 21   | 8  | 419,328   | 2.67   | 1,119,606   | 1,120   |
|------------------------------------|---------|---------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----|------|----|-----------|--------|-------------|---------|
| Feller Buncher:                    | CAT 522 | Roadworks           | 4          | Site Wide                                                                                                                                                                                                                               | 2 | 312 | 624 | 10.5 | 36 | 943,488   | 2.67   | 2,519,113   | 2,519   |
| Batch Plant:                       |         | Roadworks           | 2          |                                                                                                                                                                                                                                         | 2 | 312 | 624 | 22   |    | -         | 2.67   | -           | -       |
| Crusher:                           |         | Roadworks           | 2          |                                                                                                                                                                                                                                         | 2 | 312 | 624 | 22   |    | -         | 2.67   | -           | -       |
| Explosives                         |         | Offsites            | 11,721,600 | Sitewide explosives in kg. Assuming<br>we need to drill and blast 14,800,000<br>m3 of rock                                                                                                                                              |   |     |     |      |    |           | 0.19   | 2,215,382   | 2,215   |
| Drill and blast                    |         | Offsites            |            |                                                                                                                                                                                                                                         |   |     |     |      |    |           |        |             |         |
| Turbine Concrete (non-buyoant)     |         | Offsites            | 272,083    | Per turbine. Assumed 70% of total<br>Footing: 647 m3<br>Pedestal: 40 m3<br>Crane pad: 140 m3<br>TOTAL: 827 m3                                                                                                                           |   |     |     |      |    |           | 400.00 | 108,833,200 | 108,833 |
| Turbine Concrete (buyoant)         |         | Offsites            | 156,510    | Per turbine. Assumed 30% of total<br>Footing: 930 m3<br>Pedestal: 40 m3<br>Crane pad: 140 m3<br>TOTAL: 1110 m3                                                                                                                          |   |     |     |      |    |           | 400.00 | 62,604,000  | 62,604  |
| Concrete for electricity towers    |         | Offsites            | 87,638     | 66 kV x896 (@12 poles/km):<br>1.5Dx4=7.07m3<br>230 kV x74 (@8 poles/km)<br>2.5Dx4=19.63 m3                                                                                                                                              |   |     |     |      |    |           | 400.00 | 35,055,040  | 35,055  |
| Concrete for collector substations |         | Offsites            | 2,400      | Trafo: 2x50=200m3<br>Circuit breaker: 6x10=120m3<br>Control building: 200m3<br>Cable trenches: 120m3<br>Support structures: 100m3<br>TOTAL = approx. 800m3 / substation                                                                 |   |     |     |      |    |           | 400.00 | 960,000     | 960     |
| Concrete for camps                 |         | Offsites            | 14,000     | Assumed 2x500people camps and<br>1x1000 ppl camp. 20m2 average living<br>quarters per person, 0.15 slab<br>thickness, 2m frost line,<br>Concrete for slabs: 1500m3<br>Concrete for footings: 20% of slab<br>area 2000m3<br>TOTAL 3500m3 |   |     |     |      |    |           | 400.00 | 5,600,000   | 5,600   |
| Concrete for main process facility |         | Production facility | 532,631    |                                                                                                                                                                                                                                         |   |     |     |      |    |           | 400.00 | 213,052,240 | 213,052 |
| Cement trucks                      |         | Offsites            | 17,000     | truck rides                                                                                                                                                                                                                             |   |     |     |      |    | 2,040,000 | 2.67   | 45,390      | 45      |
| Diesel generators - camps          |         | Offsites            | 8          | Assumed 2x350kW generators per 500<br>people camp running 24/7, at 80%<br>load. Assumed 2x 500 ppl camps and<br>1x 1000 ppl camp                                                                                                        | 2 | 365 | 730 | 24   | 65 | 9,110,400 | 2.67   | 24,324,768  | 24,325  |

| Diesel generators - offsites general   | Offsites | 20    | Assumed 20x 100 kW small diesel<br>generators for powering small<br>machinery                                    | 2 | 312 | 624 | 21 | 18 | 4,717,440 | 2.67 | 12,595,565  | 12,596  |
|----------------------------------------|----------|-------|------------------------------------------------------------------------------------------------------------------|---|-----|-----|----|----|-----------|------|-------------|---------|
| Diesel generators for batch plants     | Offsites | 2     | Assumed a power requirement for a<br>100m3/h capacity batch plant of 125<br>kW, hence 1x 130 kW diesel generator | 2 | 312 | 624 | 21 | 25 | 655,200   | 2.67 | 1,749,384   | 1,749   |
| Heavy haul truck rides - wind turbines | Offsites | 4,230 |                                                                                                                  |   |     |     |    |    | 2,538,000 | 2.67 | 6,776,460   | 6,776   |
| Heavy haul trucks - electricity towers | Offsites | 5,656 |                                                                                                                  |   |     |     |    |    | 2,262,400 | 2.67 | 6,040,608   | 6,041   |
| Heavy haul trucks - electricity cables | Offsites | 107   |                                                                                                                  |   |     |     |    |    | 42,840    | 2.67 | 114,383     | 114     |
| Total                                  |          |       |                                                                                                                  |   |     |     |    |    |           |      | 753,998,677 | 753,999 |

| Total cement (kg)             | 266,315,300 |      |        |          |
|-------------------------------|-------------|------|--------|----------|
| Total fuel (l of diesel)      | 124,000,084 |      | 12,400 | 1,240.00 |
| Total cubic yards of cement   | 242,105     |      |        |          |
| Total number of truck rides   |             |      |        |          |
| of cement truck               | 40,351      |      |        |          |
|                               |             |      |        |          |
| kg cement per m3 of           | 250         |      |        |          |
|                               |             |      |        |          |
|                               |             |      |        |          |
|                               |             |      |        |          |
| Total distance per truck ride |             |      |        |          |
| (back and forth)              | 30          | km   |        |          |
| Fuel consumption of a         |             |      |        |          |
| cement truck (diesel)         | 4           | l/km |        |          |
|                               |             |      |        |          |

| · · · · · · · · · · · · · · · · · · · |        |
|---------------------------------------|--------|
| Fuel consumption of a                 |        |
| cement truck (diesel)                 | 4 l/kn |
| Fuel consumption of                   |        |
| 350KW diesel generator                |        |
| running at 80% load                   | 65 l/h |
| Fuel consumption of                   |        |
| 100kW diesel generator                |        |
| running at 80% load                   | 18 l/h |

| Fuel consumption of          |          |             |            |          |
|------------------------------|----------|-------------|------------|----------|
| 130kW diesel generator       |          |             |            |          |
| running at 90% load          |          | 25          | l/h        |          |
| Carbon coefficient of        |          |             |            |          |
| explosives per kg            |          |             |            |          |
|                              |          | 0 189       | kaCU5/kat  |          |
| Carbon coefficient of diesel |          | 0.100       | 16002/16/  |          |
| perl                         |          | 2.67        | kgCO2/l di | esel     |
| Carbon coefficient of m3 of  |          |             | 0          |          |
| concrete                     |          | 400         | kgCO2/m3   | concrete |
| Louling accumption for       |          |             |            |          |
|                              |          |             |            |          |
|                              | Continuo | n o r tu rh | Total num  |          |
| Towar agetion                | Sections | perturb     | 1000       | 1000     |
| Tower Section                | 4        |             | 1880       | 1880     |
| Detero                       | 1        |             | 470        | 470      |
| Rotors                       | 1        |             | 4/0        | 470      |
| Blades                       | 3        |             | 1410       | 1410     |
| IOTAL                        |          |             |            | 4230     |
| km per truck ride (wind      |          |             |            |          |
| turbine) (back and forth)    | 60       |             | km         |          |
| diesel consumption of        |          |             |            |          |
| heavy haul truck carying     |          |             |            |          |
| wind turbine sections        | 10       |             | l/km       |          |
| Power lines                  | Sections | per towe    | er         |          |
| Number of electricity        |          | •           |            |          |
| towers (MV)                  |          | 10,752      |            |          |
| Number of electricity        |          |             |            |          |
| towers (HV)                  |          | 560         |            |          |
| Electricity tower per        |          | 2           |            |          |
| Total number of truck rides  |          | 5,656       |            |          |

| Length of cable (MV + HV)   | 966 |     |      |
|-----------------------------|-----|-----|------|
| Cable drums (assumed        |     |     |      |
| 10km/drum MV 20mm and       |     |     |      |
| 4km per drum HV 50 mm       |     |     |      |
| cable)                      | 107 |     |      |
| Cable drum per truck        | 1   |     |      |
| Total number of truck rides |     | 107 |      |
| Distance per truck ride     |     |     |      |
| (back and forth)            | 40  |     | km   |
| Diesel consumption of       | 10  |     | l/km |
|                             |     |     |      |
|                             |     |     |      |

### CO2 EMISSION FACTOR CALCULATION

|                 | TOTAL CARBON BY WEIGHT | DENSITY | SPECIFIC<br>GRAVITY | CALORIFIC<br>VALUE | CO2 Factor | UNITS                             |  |
|-----------------|------------------------|---------|---------------------|--------------------|------------|-----------------------------------|--|
|                 |                        |         |                     |                    |            |                                   |  |
|                 |                        | lb/scf  |                     | Btu/scf            |            |                                   |  |
| COAL            | 0.786                  |         |                     |                    |            | 2.882 TON CO2 / TON COAL          |  |
| TAR/BTX         | 0.86                   |         |                     |                    |            | 3.153333333 TON CO2 / TON TAR/BTX |  |
| COKE            | 0.918                  |         |                     |                    |            | 3.366 TON CO2/ TON COKE           |  |
| COG             | 0.3626                 |         | 0.3622              | 550                | )          | 33463.83186 TONS CO2 / BTU X 1012 |  |
| BFG             |                        | 0.0797  | 7 1.0402            | 92.0839            | Э          | 282184 TONS CO2 / BTU X 1012      |  |
| NATURAL GAS     | 0.72                   |         | 0.59                | 1000               | )          | 59430.5712 TONS CO2 / BTU X 1012  |  |
| OIL             | 0.87                   |         |                     | 183000             | )          | 0.0154715 TONS CO2 / IMP GAL      |  |
| DIESEL          | 0.873                  |         |                     |                    |            | 0.013844325 TONS CO2 / IMP GAL    |  |
| GASOLINE        | 0.855                  |         |                     |                    |            | 0.011489775 TONS CO2 / IMP GAL    |  |
| PROPANE         | 0.817                  |         |                     |                    |            | 0.00763895 TONS CO2 / LBS         |  |
| LIME (UNBURNT)  | 0.117                  |         |                     |                    |            | TON                               |  |
| DOLOMITE        | 0.124                  |         |                     |                    |            | TON                               |  |
| HOT METAL       | 0.043                  |         |                     |                    |            | TON                               |  |
| REG SCRAP       | 0.0014                 |         |                     |                    |            | TON                               |  |
| HECKETT SCRAP   | 0.001                  |         |                     |                    |            | TON                               |  |
| CARBON IN STEEL | 0.00137                |         |                     |                    |            |                                   |  |

Note: BFG Factor determined using combustion spreadsheet information.

The EVREC projects aims at producing 940,000 tpa of clean renewable ammonia produced using exclusively renewable power and resulting in 0 tCO2e/tNH3 greenhouse gas emissions (GHG).

#### 940000 1000000

EVREC products are set to be shipped to Europe where it would replace carbon intense fossil-based conventional ammonia production process as the benchmark ammonia production emission factor in the EU is 1.57 tCO2e/tNH3 (source: Update of benchmark values for the years 2021 – 2025 of phase 4 of the EU ETS).

1.57 1.57

From 2030 onwards, it could represent a GHG emissions reduction potential of up to 1,476 ktCO<sub>2</sub>e/annum and, brought to a total emissions reduction potential of 29,516 ktCO<sub>2</sub>e assuming minimum 20 years of operation.

1476000 1570000 20 30 29520000 47100000

## REDRAFT

The EVREC projects aims at producing ~940,000-1,000,000 tpa of clean renewable ammonia produced using exclusively renewable power and resulting in 0 tCO2e/tNH3 greenhouse gas emissions (GHG).

EVREC products are set to be shipped to Europe where it would replace carbon intense fossil-based conventional ammonia production process as the benchmark ammonia production emission factor in the EU is 1.57 tCO2e/tNH3 (source: Update of benchmark values for the years 2021 – 2025 of phase 4 of the EU ETS).

From 2030 onwards, it could represent a GHG emissions reduction potential of up to 1,570 ktCO2e/annum and, brought to a total emissions reduction potential of 47,100 ktCO2e assuming minimum 30 years of operation.

#### CO2 SUMMARY TABLE

|                 | Construction Period | <b>Operational Period</b> | Decomissioning Period | Total |  |
|-----------------|---------------------|---------------------------|-----------------------|-------|--|
| KtCO2 Generated | 754                 |                           | 53                    | 807   |  |
| KtCO2 Offset    |                     | 47,100,000                |                       |       |  |
|                 |                     | EXPECTED NET CO2 PF       | 47,099,193            |       |  |

#### Notes

The EVREC projects aimes at producing ~1,000,000 tpa of clean renewable ammonia produced using exclusively renewable power and resulting in 0 tCO2e/tNH3 greenhouse gas emissions (GHG).

EVREC products are set to be shipped to Europe where it would replace carbon intense fossil-based conventional ammonia production process as the benchmark ammonia production emission factor in the EU is 1.57 tCO2e/tNH3 (source: Update of benchmark values for the years 2021 – 2025 of phase 4 of the EU ETS).

Assumes a Project operating life of 30 years

g



# EVREC

# **Certification Action Plan**

Actionable recommendations to prepare EVREC for certification once operational

Version 1 – Final report

September 2024



# **Table of Contents**

| 1  | Exe          | ecutive summary and general recommendations4                                       |
|----|--------------|------------------------------------------------------------------------------------|
| 2  | Ac           | ronyms                                                                             |
| 3  | Inti         | oduction                                                                           |
| 4  | Pro          | ject description                                                                   |
| 5  | REI          | D II RFNBO compliance assessment across the value chain                            |
|    | 5.1<br>value | Requirements for REDII compliant RFNBO production and usage along the entire chain |
|    | 5.2          | Transposition of REDII requirements to the project context                         |
| 6  | Ну           | drogen production22                                                                |
|    | 6.1          | Responsible custodians, roles and responsibilities                                 |
|    | 6.2          | Operational considerations                                                         |
|    | 6.3          | Monitoring and data collection requirements25                                      |
|    | 6.4          | Contracting                                                                        |
| 7  | An           | nmonia production                                                                  |
|    | 7.1          | Responsible custodians, roles and responsibilities                                 |
|    | 7.2          | Operational considerations                                                         |
|    | 7.3          | Monitoring and data collection requirements                                        |
|    | 7.4          | Contracting                                                                        |
| 8  | An           | nmonia storage, shipping, and distribution                                         |
|    | 8.1          | Responsible custodians, roles and responsibilities                                 |
|    | 8.2          | Operational considerations                                                         |
|    | 8.3          | Monitoring and data collection requirements                                        |
|    | 8.4          | Contracting                                                                        |
| 9  | Do           | wnstream considerations                                                            |
|    | 9.1          | Responsible custodians, roles, and responsibilities                                |
|    | 9.2          | Contracting                                                                        |
|    | 9.3          | Considerations on cracking                                                         |
| 1( | ) Re         | ferences                                                                           |
| 11 | An           | nex                                                                                |
| 12 | 2 De         | finitions                                                                          |





## 1 Executive summary and general recommendations

An analysis of the relevant EU regulations to the EVREC's project context was carried out to assess the likelihood the project has of producing RED II compliant Renewable Fuel of Non-Biological Origin (RFNBO) and therefore of addressing the associated mandatory market in Europe. In order to anticipate potential compliance-related risks, a preliminary assessment has been conducted based on current technical & operational hypotheses considered by EVREC and evaluated against the CertifHy<sup>™</sup> Voluntary Scheme requirements for RED II RFNBO compliance. However, it is important to highlight that actual compliance can only be demonstrated based on actual production of a running plant.

This assessment resulted in two main activities:

- A preparatory analysis conducted by Hinicio and aiming at reviewing EVREC hypotheses to identify suitable scenarios for the audit both on renewability and GHG emissions assessment.
- An audit exercise conducted by Bureau Veritas, certification body recognized under the CertifHy<sup>™</sup> Voluntary Scheme.

Based on the hypotheses taken so far and assuming the project will be built and operated as per the designs and documents provided, the conclusion of this audit exercise was that the RFNBO ammonia coming from EVREC's project is on track to be RED II compliant.



Based on the audit conclusions & open remarks, and to support EVREC eventually achieving RED II RFNBO compliance when starting production, Hinicio developed a range of recommendations summarized in the Table 1 below.

For more detailed information about each of the recommendations please refer to the specific section addressing the issue in the following chapters.

The timeline for implementing these recommendations should be understood as follows:

- During engineering phase: refers to the incorporation of equipment into the plant design, either to allow more flexibility during the operation or to monitor and perform mass and energy balances.
- Before Final Investment Decision (FID): refers to the investigation of alternatives or the negotiation with third parties of concepts that might have an important impact during the operation of the plant, and that cannot be incorporated at a later stage.
- Before Commercial Operation Date (COD): refers to the implementation of administrative measures and processes that are key to the certification of the RFNBO.
- During operation: refers to the implementation of strategies that would allow for the optimization of the production of RFNBOs, or the certification of the product.

Importance was scored as follows:

- Low: the result of implementation of the recommendation is a nice to have but does not jeopardize the general business model.
- Medium: the recommendation needs to be addressed to successfully implement the project but can be corrected at a later stage if necessary.
- *High*: the implementation of the recommendation is paramount to the production or certification of the RFNBO.



| VALUE CHAIN<br>POSITION                        | ACTION                                                                                                                                                                                                                                                                                                                           | INVOLVED PARTIES                            | TIMELINE                           | IMPORTANCE |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------|------------|
| General                                        | Choose a Voluntary Scheme and<br>accredited certification body to prepare<br>for the actual certification.                                                                                                                                                                                                                       | EVREC<br>Voluntary<br>Schemes               | Before COD                         | High       |
| General                                        | Perform recurrent compliance checks /<br>stress tests to ensure that the technical /<br>commercial options retained do not<br>jeopardize compliance.                                                                                                                                                                             | EVREC                                       | Before COD                         | High       |
| General                                        | Put in place a mass balancing system<br>allowing to monitor the environmental<br>attributes of the different products across<br>the entire production chain.                                                                                                                                                                     | EVREC<br>EPC contractor                     | During<br>engineering<br>phase     | High       |
| General                                        | Ensure relevant information (internal and from third parties) is available to perform an accurate GHG footprint calculation.                                                                                                                                                                                                     | EVREC<br>Power & other<br>inputs suppliers  | Before FID                         | Medium     |
| General                                        | Put in place a system for the transfer of<br>PoS down the value chain to other<br>economic operators.                                                                                                                                                                                                                            | EVREC and other<br>identified<br>custodians | Before COD                         | Medium     |
| Electricity<br>sourcing from<br>the local grid | If looking for marginal renewable power<br>sourcing from the grid, engage with the<br>local grid operator to ensure access to the<br>relevant information required to<br>demonstrate the >90% claim i.e. share of<br>renewable power in the grid consumption<br>mix (production + imports – exports) at a<br>yearly granularity. | EVREC<br>The grid operator                  | Before COD                         | Medium     |
| Electricity<br>sourcing from<br>the local grid | If looking for marginal renewable power<br>sourcing from the grid closely monitor the<br>local grid operator upcoming production<br>strategy and potential impact on the 90%<br>clause                                                                                                                                           | EVREC<br>The grid operator                  | During<br>operation                | Medium     |
| Renewable<br>electricity<br>generation         | Install a smart metering system allowing to<br>oversee the energy balances, including<br>any possible exchanges with the local grid<br>and/or the back-up power generators.                                                                                                                                                      | EVREC<br>EPC contractor                     | During<br>engineering<br>phase     | High       |
| Hydrogen<br>production                         | Implement sub-metering such the hourly<br>matching of the electrolyser consumption<br>with the renewable electricity generation<br>can be proved.                                                                                                                                                                                | EVREC<br>EPC contractor                     | During<br>engineering<br>phase     | High       |
| Hydrogen<br>production                         | Install the necessary equipment to perform the mass balance.                                                                                                                                                                                                                                                                     | EVREC<br>EPC contractor                     | During the<br>engineering<br>phase | High       |
| Hydrogen<br>production                         | Perform mass balance and chose the<br>balancing period that optimizes<br>operation.                                                                                                                                                                                                                                              | EVREC                                       | During<br>operation                | Medium     |
| Hydrogen<br>production                         | Monitor and keep the products GHG<br>emissions within the operational thresholds<br>necessary to guarantee RED compliant<br>RFNBO.                                                                                                                                                                                               | EVREC                                       | During<br>operation                | High       |
| Hydrogen<br>production                         | Set up a forecasting and control system<br>that allows to maximize the amount of<br>renewable electricity fed to the<br>electrolyser.                                                                                                                                                                                            | EVREC<br>EPC contractor                     | During<br>operation                | Low        |
| Ammonia<br>production                          | Optimize the size of the $H_2$ buffer storage<br>tanks according to the expected<br>fluctuations in $H_2$ generation and the<br>capabilities of the ammonia plant.                                                                                                                                                               | EVREC<br>EPC contractor                     | During<br>engineering<br>phase     | Low        |

# Table 1: Actionable overall recommendations



| Ammonia<br>production                   | Implement a strategy for the storage of H <sub>2</sub> according to the production capacity of the ammonia plant.                                                                                     | EVREC                                      | During<br>operation            | Medium |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|--------|
| Ammonia<br>production                   | Install the necessary equipment and<br>metering systems for performing mass<br>balance.                                                                                                               | EVREC<br>EPC contractor                    | During<br>engineering<br>phase | High   |
| Ammonia<br>production                   | Perform mass balance and choose the<br>balancing period that optimizes<br>operation.                                                                                                                  | EVREC                                      | During<br>operation            | Medium |
| Ammonia<br>production                   | Implement sub-metering such the<br>matching of the ammonia plant electricity<br>consumption with the renewable<br>electricity generation can be proved (on<br>a batch basis).                         | EVREC<br>EPC Contractor                    | During<br>engineering<br>phase | High   |
| Storage,<br>shipping, &<br>distribution | Define whose responsibility it is to perform<br>the mass balance and GHG emissions<br>calculations for the downstream transport<br>and uses.                                                          | EVREC and other custodians                 | During<br>operation            | High   |
| Storage,<br>shipping, &<br>distribution | Encourage the shipping of the ammonia<br>using high-capacity ships carrying full load<br>and travelling at eco-speeds.                                                                                | Shipping operator                          | During<br>operation            | Low    |
| Storage,<br>shipping, &<br>distribution | Promote the use carbon efficient fuels for shipping.                                                                                                                                                  | Shipping operator                          | During<br>operation            | Low    |
| Downstream                              | In case new cracking options would be<br>considered, evaluate the impact of the<br>different cracking heat sources options on<br>the resulting hydrogen renewability as part<br>of the business case. | EVREC<br>Off-taker                         | Before FID                     | High   |
| Downstream                              | Ensure the correct transmission of the PoS along the entire value chain.                                                                                                                              | EVREC and other<br>certified<br>custodians | During<br>operation            | High   |

It is key to incorporate these recommendations into the project design from an early stage to minimize their cost of implementation and avoid delays during the construction and operation of the project.

7



# 2 Acronyms

| ASU     | Air Separation Unit                     |
|---------|-----------------------------------------|
| ВОР     | Balance of Plant                        |
| CO2e    | Carbon dioxide equivalent               |
| COD     | Commercial Operation Date               |
| DA      | Delegated act                           |
| EAC     | Energy Attribute Certificate            |
| EU      | European Union                          |
| FID     | Final Investment Decision               |
| GHG     | Greenhouse gas                          |
| НР      | High pressure                           |
| MP      | Medium pressure                         |
| PoS     | Proof of Sustainability                 |
| RE      | Renewable Energy                        |
| RED     | Renewable Energy Directive              |
| REDII   | Renewable Energy Directive II           |
| RED III | Renewable Energy Directive III          |
| RFNBO   | Renewable fuel of non-biological origin |
| SMR     | Steam Methane Reformer                  |
| VLSFO   | Very Low Sulphur Fuel Oil               |



# 3 Introduction

Introduced in 2009, the Renewable Energy Directive (RED) is the main regulation driving the uptake for renewable energy in Europe. The current version of the Directive (REDII update or RED III) – adopted in October 2023 – sets a binding objective of 42.5% (previously 32% in REDII) renewable share in the Member States overall energy consumption. Besides this overall target, the following sector-specific ambitions are defined:

- Increase of binding targets for renewables in the transport sector by 2030: 29% of energy share or a reduction of 14.5% in the GHG intensity.
- Introduction of a binding target for Renewable Fuel of Non-Biological Origin (RFNBO) hydrogen use in the industry sector by 2030: 42% of energy share.
- Introduction of a target for renewable energy in heating and cooling in buildings by 2030: +1.1pp/year up to 2030.

These REDIII sector-specific binding targets in the industry, the transport sector and in the heating & cooling sector effectively create a demand for RFNBOs, incentivizing its production and commercialization within the European Union.

Each Member State has an 18-month period following the adoption of REDIII to transpose the directive into their local legislation. During that process each Member State will need to put in place a mechanism for incentivizing compliance (or to discourage the use of non-compliant energy sources beyond the threshold). These incentives will mainly be economical, through taxes or subsidies, making it desirable for economic operators to meet the required targets.

To demonstrate compliance, economic operators will need to evidence that the fuels claimed to be used to meet REDIII targets are compliant with the EU legislation and definitions. For the specific case of RFNBOs, the following criteria needs to be met and certified:

- Renewability: all relevant energy inputs of the RFNBOs, i.e. the electricity consumed by the electrolyser, must be of renewable origin, taking into consideration the additionality, temporal and geographical correlation requirements defined in the legislation. Using non-renewable energy to cover for non-relevant energy inputs (nitrogen production, hydrogen compression, ammonia production, ...) would not affect the renewability of the final product but the impact on the GHG emissions of the product should be closely monitored (see below).
- Greenhouse gas emissions reduction: the RFNBO must achieve at least 70% of GHG emissions reductions on a well-to-grave basis, compared to its fossil fuel comparator (94 gCO<sub>2eq</sub>/MJ i.e., max. GHG emissions of 28.2 gCO<sub>2</sub>eq/MJ fuel LHV).



Fuels need to be produced and handled by certified economic operators empowered to claim they have been produced and used according to the above-mentioned requirements. To do so the economic operators will need to go through an audit & certification process with a recognized Voluntary Scheme whether the RFNBOs are produced locally or imported into the EU.

In that context, the objective of this document is to analyze the compliance of the EVREC project according to the CertifHy<sup>TM</sup>'s Voluntary Scheme for RFNBOs (currently under review by the European Commission), and to assess whether the project design is on track to comply with the EU regulation and hence be eligible to be used in the EU RFNBO premium market. This document provides actionable recommendations to EVREC to work towards demonstrating compliance with the RFNBO Voluntary Scheme's requirements once the plant is operational.

This document builds on two previous deliverables from May, June, and July 2024 respectively:

- A regulatory compliance analysis delivered by Hinicio to EVREC, including:
  - REDII requirements analysis and transposition to EVREC's project.
  - Definition and critical review of the reference scenario.
  - Sensitivity analysis and identification of key parameters to monitor.
  - Definition of the scenarios to put forward for a pre-certification.
  - $\circ$   $\,$  Preparation for the audit and guidance through the process.
- A pre-certification audit report delivered by Bureau Veritas on the selected scenarios, in collaboration with Hinicio and according to CertifHy™'s Voluntary Scheme for RFNBOs.

The CertifHy<sup>™</sup> Voluntary Scheme<sup>1</sup> is based on the requirements and criteria set out in the two Delegated Acts (DA) published by the European Commission on the 20<sup>th</sup> of June 2023<sup>2</sup>.

These Delegated Acts are associated documents to the Renewable Energy Directive (REDII) and set the definitions and conditions to be matched by hydrogen (and derivatives) to be considered Renewable Fuels of Non-Biological Origins (RFNBO) and count towards renewable fuels consumption targets in the EU as per REDIII.

On March 1<sup>st</sup>, 2023, CertifHy<sup>™</sup> submitted its RFNBO EU Voluntary Scheme documents for approval by the European Commission<sup>3</sup>. Voluntary Schemes such as CertifHy<sup>™</sup>'s RFNBO EU Voluntary Scheme, set out the criteria and requirements that economic operators need to meet to ensure that RFNBO volumes comply with the relevant REDII criteria.

<sup>&</sup>lt;sup>1</sup> CertifHy<sup>TM</sup> VS system documents "GHG Emissions & Renewability" from 28/02/2023 and "Traceability & Chain of Custody" from 24/01/2023 and updated in August/2023.

<sup>&</sup>lt;sup>2</sup> <u>Delegated act on renewable electricity requirements, Delegated act on GHG methodology</u>

<sup>&</sup>lt;sup>3</sup> <u>https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/voluntary-schemes\_en</u>



Once CertifHy<sup>TM</sup>'s EU Voluntary Scheme for RFNBO has been recognized by the European Commission<sup>4</sup>, economic operators will be able to issue certificates under CertifHy<sup>TM</sup>'s scheme to demonstrate that hydrogen and derivatives have been produced in compliance with EU REDII and Delegated Acts criteria. The subsequent certificates and proof of sustainability (PoS) documents will be used to demonstrate compliance with the European Member States' renewable energy in transport target and the mandate on the use of renewable hydrogen in industry (as per REDII).

It is worth noting that going through the process of certification via a Voluntary Scheme (such as CertifHy<sup>TM</sup>) is the only way of demonstrating compliance and, therefore, of benefitting from the premium value of the RFNBO in the EU (subsidy, tax reliefs, etc., depending on the Member State transposition).

In this report we will first provide an overview of the regulatory context under which the project is developed, and we will make recommendations to be considered along the entire value chain to be able to demonstrate that the RFNBO to be produced and delivered by EVREC is on track for being compliant and therefore will be a premium product. Following, more detailed recommendations will be given per item in the value chain, namely i) Hydrogen production, ii) Ammonia production, iii) Storage and shipping and iv) Downstream use. For each item we provide recommendations regarding:

- 1. Custodian (economic operator): roles and responsibilities.
- 2. Operational considerations.
- 3. Monitoring requirements for auditing purposes.
- 4. Contractual considerations.





Disclaimer: This report is based on a high-level analysis, and it should not be considered an exhaustive step-by-step action plan to guarantee compliance with the requirements of CertifHy<sup>TM</sup>'s RFNBO Voluntary Scheme. In addition, a level of uncertainty remains as to the final criteria and requirements that will be set out in RFNBO Voluntary Schemes as none has been formally recognized by the European Commission at the date of writing this report.



## 4 Project description

Exploits Valley Renewable Energy Corporation "EVREC" is a Power-to-X (P2X) mega project located in the central region of Newfoundland, Canada that aims at developing, building, and operating a large-scale industrial value chain to produce renewable ammonia, from renewable hydrogen to address the European market for Renewable Fuels of Non-Biological Origin (RFNBO).

The renewable power for the project will be produced via a directly connected combined 3.1 GW windfarm and 250 MW solar farm, designed to feed a 2.6 GW modular water electrolyser, capable of producing up to 167 kton/year of hydrogen. This hydrogen will be fed into 3 newly-built ammonia production plants, where it will be converted into e-ammonia using nitrogen obtained from an in-house Air Separation Unit (ASU) allowing to produce around 1,000 kton/year of RFNBO ammonia, 100% of which will be liquified and shipped to the main European ports to address the industrial demand for compliant RFNBO and/or hydrogen.

To evaluate the products compliance on a full value chain – as required by the regulation – hypotheses have been taken for the downstream part:

- Shipping to Antwerp and distribution via barge on a 100 km distance to be used as ammonia.
- Shipping to Rotterdam and distribution via ammonia pipeline on a 100 km distance to be used as ammonia.
- Shipping to Hamburg, to be cracked to hydrogen using EVREC ammonia as a heat source, compressing the resulting hydrogen and delivering it via pipeline to an industrial user at a 200 km distance.



Figure 1: Schematic of EVREC's project setup.



If the intended strategy is to run exclusively on directly connected renewable power, some power could be sourced from the grid via a 50 MW connection to the local grid. Considering the high penetration of RE in the local grid consumption mix, this power will be considered renewable for the purpose of RFNBO production allowing EVREC to complement the RE coming from the direct connection (see dedicated section). This connection may also be used to distribute and sell excess renewable power to the local grid operator in case of shortage.



## 5 RED II RFNBO compliance assessment across the value chain

In the sections below we will address the main actions that are required across the value chain to demonstrate compliance and become certified in the future. We will also calculate the expected GHG emissions of EVREC's project according to a defined set of scenarios for analysis.

For a more detailed analysis of each step of the value chain individually, please refer to the next chapter, where the responsible custodians and their respective roles and responsibilities will be explained. Key operational considerations will be provided as well as monitoring and data collection requirements and the key elements that would need to be included in contracts.

# 5.1 Requirements for REDII compliant RFNBO production and usage along the entire value chain

REDII requires that the renewability of RFNBOs and their GHG emissions savings characteristics can be proven at any moment in the entire supply chain. For GHG emissions, this implies that the required scope under REDII is from "well-to-grave"<sup>5</sup>: all emissions, including distribution and combustion (or oxidation if used in a fuel cell) need to be accounted for. This is illustrated in the picture below.



## Figure 2: GHG emissions calculations scope under REDII

Hence, to produce compliant products under REDII, each step in the chain will need to be certified, including i) hydrogen production, ii) ammonia production, iii) storage and shipping and iv) downstream use.

<sup>&</sup>lt;sup>5</sup> In the EU regulatory context, emissions from the construction of assets are not considered (only operational emissions).



A mechanism is needed to trace the origin of products and pass on information along the supply chain about i) their renewable energy content ('renewability') and ii) GHG emissions savings characteristics<sup>67</sup>. Such mechanism, which all economic operators will need to use, will need to be based on a "mass balance" principle, and would need to link the physical product to a certificate, known as a "proof of sustainability" (PoS).

A PoS demonstrating REDII compliance of a share<sup>8</sup> of the product will need to be issued at each processing or stationary storage step. The PoS and the physical product may not be separated. Each custodian along the value chain will also be responsible for the upstream transport emissions of their fuel. For example, the ammonia producer is responsible for the transport emissions of the hydrogen to the ammonia plant. This is illustrated in Figure 3.



## Figure 3: Typical chain of custody for RFNBO compliant ammonia.

Therefore, an end-to-end mass balance system needs to be implemented, with information added by each economic operator ('custodian') along the supply chain concerning physical production volumes. This is critical to be able to distinguish the different production batches that might find themselves together at a particular transport or storage stage but may carry different environmental attributes (mainly renewability and GHG emissions). A Voluntary Scheme for RFNBOs, such as the one proposed by CertifHy<sup>™</sup>, allows precisely to keep track of the renewability and GHG attributes of the RFNBO following the prescribed mass balance system.

Certification according to a Voluntary Scheme for RFNBOs is thus necessary to have access to the "compliance market": the market driven by the need to comply with REDIII requirements and thereby capture a premium. It is foreseeable that many producers will want to get certified to be able to issue PoS with their products in the future, and auditors

<sup>&</sup>lt;sup>6</sup> Official definition: 'proof of sustainability' means a declaration by an economic operator, made on the basis of a certificate issued by a certification body within the framework of a voluntary scheme certifying the compliance of a specific quantity of feedstock or fuels with the sustainability and greenhouse gas emissions savings criteria set out in Articles 25(2) and 29 of Directive (EU) 2018/2001. Source: COMMISSION IMPLEMENTING REGULATION (EU) 2022/996 of 14 June 2022 on rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect land- use change-risk criteria <a href="https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0996">https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0996</a>

<sup>&</sup>lt;sup>7</sup> For an overview of data to be transmitted through the whole supply chain and transaction data (i.e. content of a PoS), see Annex 1 of <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0996</u> (same reference as previous) <sup>8</sup> Mass balancing allows certified and non-certified products to be mixed along the supply chain while keeping its environmental attributes separated.



may become a bottleneck for certification. It is therefore of great importance to book an auditor in advance and make sure to have all relevant documentation ready, to ensure a smooth and efficient certification process that allows to capture market premiums early.

## 5.2 Transposition of REDII requirements to the project context

As explained in the previous sections, mainly 2 criteria need to be met to justify that a RFNBO is REDII compliant: i) renewability and ii) greenhouse gas emissions reduction.

(i) It is expected that the electrolyser and the ammonia production process will be exclusively supplied with renewable electricity coming from the wind plants directly connected to the production plants. However, some power may be sourced from the grid requiring specific configurations on the bidding zone concept.

As defined in the EU 2019/943, bidding zones are the largest geographical area in which bids and offers from market participants can be matched without the need to attribute cross-zonal capacity. In the European context, this concept is in most cases coincident with national borders. However, there are also cases, (e.g. Italy, Denmark, Sweden) where multiple bidding zones are present within the same country. In the latest "Q&A implementation of hydrogen delegated acts" document published by the European Commission on the 14/03/2024, the Commission has provided guidance on how to interpret the bidding zone concept outside the EU. The following approach applies:

- Certifiers should assess whether at the location of the electrolyser, market regulations requiring establishing hourly prices for electricity in a geographical area exist. If so, that geographical area should be considered as a bidding zone.
- If such rules are not in place, certifiers should assess whether the electricity network in the country of production is integrated or whether there are several separated networks. If there are several networks, each network should be considered as a bidding zone.
- If the electricity network of the country is integrated and there are no geographically differentiated electricity prices, the whole country may be considered as one bidding zone.

Where the DAs require certain conditions to be met related to the concept of a bidding zone (e.g. in the case of bidding zones with abundant renewable share in the grid mix to consider that electricity as fully renewable), the conditions can only be considered as fulfilled if compliance can be demonstrated based on reliable data from official sources.



These considerations will be helpful to assess the local grid configuration and associated impact on the EVREC GHG emissions as described in the next section.

The analysis described in Annex 1 led to the conclusion that the whole Newfoundland and Labrador province should be considered one unique bidding zone for the purpose of RFNBO production as vertically integrated and separated from the other province / networks in Canada.

(ii) To assess the GHG emission reduction characteristics of the product, its carbon footprint needs to be calculated across the entire value chain, on a "well-to-grave" scope. To calculate EVREC's RFNBO GHG emissions, a value chain set-up was defined based on the project's actual configuration and the most likely conservative scenarios that the RFNBO could face during its lifecycle. Table 2 below summarizes the general parameters used to model the RFNBO GHG emissions across the modelled scenario. For the upstream part of the value chain, 3 main scenarios have been considered:

The relevant data to evaluate the general set-up of the project are described in the Table 3 below.

| Component                    | Parameter                                   | Value                                                  |  |
|------------------------------|---------------------------------------------|--------------------------------------------------------|--|
|                              | Base load                                   |                                                        |  |
|                              | Cooling water                               |                                                        |  |
|                              | Water treatment                             |                                                        |  |
|                              | EZ stack + compressor                       |                                                        |  |
| Power sourcing               | EZ BOP + aux                                | Panawable from directly connected PE production plant  |  |
| strategy                     | Hydrogen storage                            | kenewable from directly conflected ke production plant |  |
|                              | Air separation unit                         |                                                        |  |
|                              | Ammonia synthesis                           |                                                        |  |
|                              | Ammonia liquefaction                        |                                                        |  |
|                              | Ammonia storage                             |                                                        |  |
| Electricity GHG<br>emissions | Renewable sources                           | 0 gCO2e/kWh                                            |  |
|                              | Fuel                                        | Shipping VLSFO                                         |  |
| Shinning                     | Vessel                                      | Middle-sized Gas Carrier (MGC)                         |  |
| Snipping                     | Payload                                     | 90%                                                    |  |
|                              | Port of destination                         | Antwerp <b>or</b> Rotterdam <b>or</b> Hamburg          |  |
|                              | Cracking at port of                         | No or Yes                                              |  |
|                              | destination                                 | 140 01 163                                             |  |
| Downstream POTENTIAL         | Cracking fuel                               | Ammonia where relevant                                 |  |
| Uses                         | H <sub>2</sub> compression (grid injection) | Yes where relevant                                     |  |
|                              | H <sub>2</sub> pressure                     | 110                                                    |  |

#### Table 2: Description of the common parameters of the modelled scenarios



| PARAMETER                         | BASE CASE SCENARIO | UNIT    |
|-----------------------------------|--------------------|---------|
| Fresh water output                | 862                | m3/h    |
| Electrolyser capacity             | 1,740              | MW      |
| H <sub>2</sub> production         | 37.2               | ton/h   |
| ASU capacity                      | 37.6               | MW      |
| Nitrogen output                   | 171.1              | ton/h   |
| Haber-Bosch capacity              | 60                 | MW      |
| Ammonia output                    | 208                | ton/h   |
| Ammonia storage power consumption | 2.25               | MWh/day |
| Ammonia storage capacity          | 75,000             | ton     |

#### Table 3: Description of the technical hypotheses for the modelled scenario.

The GHG EMISSIONS of the base scenario was calculated, and the calculations were submitted to be audited by Bureau Veritas. The result of such audited GHG EMISSIONS calculations is presented in the Table 4 for each major step in the value chain.

- Upstream:
- I. After the storage of the ammonia at the port of export.
- II. After the unloading of the ammonia at the relevant port of destination (including the emissions related to the loading and shipping of the ammonia).
- Downstream:
- III. After 100-km distance distribution via barge.
- IV. After 100-km distance distribution via pipeline.
- V. After cracking, compression of the hydrogen and delivery at 200 km via hydrogen pipeline.



| PARAMETER                                                                   | Scenario 1 | Scenario 2 | Scenario 3 | UNIT                     | GHG SAVINGS     |
|-----------------------------------------------------------------------------|------------|------------|------------|--------------------------|-----------------|
| After the storage of the<br>ammonia at port of<br>export, Canada            |            | 0%         |            | gCO <sub>2e</sub> /MJNH3 | 100%            |
| After the unloading of<br>the ammonia at the port<br>of destination         | 3.9        | 4.1        | 4.5        | gCO <sub>2e</sub> /MJNH3 | 96% / 96% / 95% |
| After ammonia<br>distribution                                               | 4.1        | 4.2        | 4.5        | gCO <sub>2e</sub> /MJNH3 | 96% / 96% / 95% |
| After cracking using<br>ammonia in the port of<br>destination <sup>10</sup> | NA         | NA         | 5          | gCO <sub>2e</sub> /MJH2  | 95%             |
| After compression to 110 bars <sup>11</sup>                                 | NA         | NA         | 9.4        | gCO <sub>2e</sub> /MJH2  | 90%             |
| After pipeline delivery<br>on a 200 km distance                             | NA         | NA         | 9.5        | gCO <sub>2e</sub> /MJH2  | 90%             |

#### Table 4: GHG EMISSIONS along the value chain for the modelled base case scenario.

As can be seen from the results presented and audited by Bureau Veritas and shown in Table 4, the RFNBO ammonia or hydrogen would meet the minimum emission savings threshold of 70 % in all the analyzed scenarios along different steps of the value chain and would still have a budget of around 18.7 to 24.1 gCO2e/MJ for any remaining steps downstream.

Based on these considerations, it can be concluded that the EVREC project is on track to produce REDII compliant RFNBO.

However, ensuring that the operational hypotheses described in this section will eventually be met is critical to reach the results above. In particular, the use of nonrenewable power for the production steps, the shipping hypotheses, or the cracking fuel

<sup>&</sup>lt;sup>9</sup> As stated by the auditor in its report, GHG emissions calculation should be updated with the detailed list of chemicals used in the plant, not available at the moment of performing this exercise. These contributions are not expected to be material though.

<sup>&</sup>lt;sup>10</sup> As stated in the latest "Q&A implementation of hydrogen delegated acts" document published by the European Commission on the 14/03/2024 in question 57, in the case of cracking ammonia into hydrogen, since the energy content of the hydrogen coming out of the cracking process is higher than the energy content of the ammonia used as a feedstock, the electricity and heat used in the cracking process that results in this higher energy content must be considered as relevant energy. **Therefore, non-renewable energy and heat sources will have an impact in the renewability of the produced RFNBO hydrogen.** 

Q57: "One way to transport renewable hydrogen over long distance is to ship it in the form of derivatives (e.g. ammonia, methanol or methane) and to reconvert it into renewable hydrogen at the place of consumption. Is the energy used for converting hydrogen derivatives considered as relevant energy?"

A: "As set out under point 3 of the GHG methodology, only electricity and heat that is adding to the heating value of the fuel is considered as relevant energy. Where the use of heat for reconversion of derivatives does not increase the heating value of the products, the share of RCF and RFNBO is not affected. To establish whether electricity and heat that are used in a process are adding to the heating value of the fuel, the heating value of the derivative that enters the process and qualifies as an RFNBO should be compared to the heating value of the hydrogen the process yields. If the heating value of the hydrogen that yields from the process exceeds the heating value of the RFNBO input, the heating value is increased and accordingly the electricity and heat is adding to the heating value of the fuel and must be considered as relevant energy." – To be considered in case other cracking source is envisaged. See annex 2 for illustration impact.

<sup>&</sup>lt;sup>11</sup> Based on standard value from the Delegated Act for grid power carbon intensity in Germany, may decrease over time and lead to a reduced compression emission contribution.



to be used at the port of destination is key, as the use of non-low-carbon fuels may have an important impact on the hydrogen GHG emissions.



## 6 Hydrogen production

This chapter provides recommendations related to the compliance and certification of the hydrogen production. The hydrogen production plant considered in the EVREC project is a greenfield electrolyser facility located in Newfoundland, Canada. The plant will produce RFNBO hydrogen using renewable electricity generated by EVREC's assets in the region via a direct connection.

## 6.1 Responsible custodians, roles and responsibilities

Table 5: Responsible custodians, roles, and responsibilities for hydrogen production

| CUSTODIAN                                            | ROLE AND RESPONSIBILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Renewable energy<br>asset operator:<br>EVREC         | <ul> <li>Generation assets owned by EVREC.</li> <li>Generation and transmission of all the renewable energy downstream for its use for RFNBO and auxiliaries.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Grid operator<br>(private grid):<br>EVREC            | <ul> <li>The private network linking the generating assets to the downstream energy consumers will be developed and owned by EVREC and will be considered a direct connection as a base case.</li> <li>EVREC will oversee the energy balances, including any possible exchanges with the local grid using a smart metering system.</li> </ul>                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Grid operator: The<br>grid operator                  | <ul> <li>The grid in Newfoundland and Labrador is overseen and managed by the company The grid operator. The company will oversee the scheduling and dispatch of the energy balances.</li> <li>In particular, the company will also be responsible for monitoring and sharing relevant data for EVREC such as the share of renewables in the grid consumption mix over time.</li> <li>In case such system is developed, the grid operator may also be responsible or involved in the process of producing / selling Environmental Attributes Certificates (EACs) associated with the production of renewable electricity</li> </ul> |  |  |  |  |
| Hydrogen fuel<br>producer & plant<br>operator: EVREC | <ul> <li>Perform mass balance. Mass balance period can be chosen – any period up to one calendar quarter<sup>12</sup>.</li> <li>In this specific case where the hydrogen and ammonia producer are the same economic operator, it should be noted that there is:</li> <li>No need to establish a hydrogen purchase agreement (HPA) with the ammonia production plant as integrated with the hydrogen production and managed by the same economic operator.</li> <li>No need to provide Proof of Sustainability to the ammonia production plant as integrated with the hydrogen by the same economic operator.</li> </ul>             |  |  |  |  |

## 6.2 Operational considerations

As the electrolyser is fed with renewable electricity from EVREC's own production assets via a direct connection, the emissions related to electrolysis should be calculated based on the Delegated Act guideline and the renewable electricity covered by the direct connection is attributed a zero-GHG emissions (0 gCO<sub>2</sub>e/kWh) (as per REDII).

<sup>&</sup>lt;sup>12</sup> While the mass balance period can be max. one calendar quarter (3 months), the maximum timeframe over which an average footprint may be calculated is up to 1 calendar month, and should take into account temporal correlation requirements when the claim of using renewable power is made resulting in even shorter time intervals production batches.



Additionally, in case EVREC would pull power from the grid to feed its electrolyser, specific considerations would apply and the grid power would be attributed a carbon intensity of:

- 0 gCO<sub>2</sub>e/kWh if the Newfoundland and Labrador grid has a percentage of RE in the mix higher than 90%. In this case, EVREC could withdraw RE for an amount of full-load hours equivalent to the percentage of RE in the mix for the previous year. Once the 90% threshold is reached, this condition is considered matched for a period of 5 years. The analysis described in annex 1 shows that this condition was matched since 1990 and that the current grid development strategy should allow to maintain this statement over time and allowing EVREC to benefit from renewable power directly from the grid.
- In case the condition above is not matched anymore and/or power is pulled from the grid for hours exceeding the yearly cap described, the carbon intensity value of the last available year should be used and should be checked with Newfoundland Hydro, in order to use a compliant that would include also upstream emissions.

For the calculation of the GHG emissions of the produced hydrogen, the European Commission gives the following guidelines: "The greenhouse gas emissions intensity may be calculated as an average for the entire production of fuels occurring during a period of at most one calendar month but may also be calculated for shorter time intervals. Where electricity qualifying as fully renewable according to the methodology set out in Directive (EU) 2018/2001 is used as input that enhances the heating value of the fuel or intermediate products, the time interval shall be in line with the requirements applying for temporal correlation. Where relevant, greenhouse gas emissions intensity values calculated for individual time intervals may then be used to calculate an average greenhouse gas emissions intensity for a period of up to one month, provided that the individual values calculated for each period meet the minimum savings threshold of 70 %<sup>13</sup>".

This means that different time intervals could be considered for the calculation of the GHG emissions in the production of hydrogen (where the heating value of the fuel is enhanced) and of the rest of intermediary products (including ammonia). Table 6 below explains the different time intervals that could be considered.

|                                         | Batches and GHG Calculation                                      | Mass balance             |
|-----------------------------------------|------------------------------------------------------------------|--------------------------|
| Hydrogen                                | Before 2030: up to a calendar month<br>After 2030: Up to an hour | Up to a calendar quarter |
| Ammonia and other intermediate products | Up to a calendar month                                           |                          |

#### Table 6: Time interval definition for batches, GHG calculations and mass-balance.

<sup>&</sup>lt;sup>13</sup> Commission Delegated Regulation (EU) 2023/1185 of 10 February 2023. Annex A.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32023R1185



In the case of hydrogen, Figure 4 illustrates specific conditions under which the hydrogen produced would (or not) comply with the REDII requirements and be considered an RFNBO. Each of the timeframes identified in the profile can be considered individual production batches<sup>14</sup>. These different production batches lead to different types of hydrogen:

- When the electricity mix used for the hydrogen production is comparable to time interval 1 or 4, the renewable electricity produced covers all the electrolyser consumption. Therefore 100% REDII compliant RFNBO hydrogen is produced. This is EVREC's base case.
- When the electricity mix used for hydrogen production is comparable to time interval 2, the renewable energy produced does not cover all the electrolyser needs and additional electricity is sourced from the grid (considering it delivers non-renewable energy in this example). A mix of REDII compliant RFNBO (85%) and non-RFNBO (15%) hydrogen is produced.
- When the electricity mix used for hydrogen production is comparable to time interval 3, the renewable energy produced does not cover all the electrolyser needs and additional electricity is sourced from the grid. Renewable hydrogen is produced (as renewable electricity is used) but the level of grid electricity used is high enough to bring the overall batch carbon footprint higher than the threshold. No REDII compliant RFNBO (0%) is produced.



#### Figure 4: Example of batch production profile mixing RFNBO and non RFNBO production<sup>15</sup>.

These results and analyses are thus closely linked to the timeframe defined. Optimal choice of timeframes (within the limits specified in Table 6) can allow to maximize the volume of REDII compliant hydrogen produced. The issuance of PoS is done ex post but there are also no specific guidelines on whether the batch timeframe needs to be set

<sup>&</sup>lt;sup>14</sup> A batch is the production within a define time interval.

<sup>&</sup>lt;sup>15</sup> Source: Hinicio. Hypothetical case.



ahead of production or afterwards. Thus, any batch/timeframe definition should be acceptable if it respects the conditions specified above and if the information collected is sufficient to demonstrate the products' compliance.

## 6.2.1 Following renewable energy profile (temporal correlation compliance)

The electrolyser stack is the part of the hydrogen production plant which contributes to the energy content of the fuel. It therefore needs to comply with the temporal correlation requirement. To comply with the temporal correlation requirement, the electrolyser stack power consumption should follow the production profile of the renewable energy asset(s) on an hourly basis (monthly until 31/12/2029). To do so the operator of the hydrogen production plant, EVREC, needs to receive information about the renewable energy production profiles and schedule its hydrogen production accordingly.

Showing exact matching of the stack consumption with the renewable assets would require sub-metering. This will be discussed in more detail in section 6.3.

## 6.2.2 GHG Emissions monitoring and control on the Balance of Plant

The Balance of Plant (BoP) and Auxiliary power demand does not contribute to the energy content of the fuel and therefore does not need to meet the temporal correlation requirement. However, they do have an impact on the GHG emissions of the produced hydrogen.

In the audit it was assumed that all electricity consumed by the hydrogen production plant, including the BoP and auxiliary power, is coming from REDII compliant renewable electricity sources (thus with no impact on the GHG emissions). Once the plant is operational, part of this electricity may come from non-renewable sources (either the grid or back-up power generator). For each production batch this amount of nonrenewable electricity should be monitored, and the GHG emissions calculated and kept below the threshold.

## 6.2.3 Synchronization of hydrogen production with ammonia production

In the EVREC project setup, there is hydrogen storage/buffer in between the electrolyser and the ammonia synthesis plant. However, most of the produced hydrogen will need to be directly fed into the ammonia synthesis plant. For this reason, the ammonia plant should follow the production profile of the hydrogen production plant when possible, and the H<sub>2</sub> storage capacity should be used to smoothen the fluctuations in hydrogen production. The implications this has on the ammonia plant are further detailed in section 7.2.

## 6.3 Monitoring and data collection requirements

The production of hydrogen is the main contributor to the energy content of the RFNBO; hence it is the driver for the renewability aspect of the PoS. For this reason, special attention should be given to monitoring and data collection related to electricity



sourcing for auditing and certification purposes. Hydrogen production is, to a lesser extent, also relevant for the GHG emissions of the product.

## 6.3.1 Electricity

Specific attention should be given to the metering of electricity. Optimizing the usage of renewable electricity from the direct connection may require being able to specifically identify the electrical consumption of different (sub-)process blocks. This would be required at least for the electrolyser, but it can be of interest to be able to identify any specific consumptions throughout the production process to adjust the renewable electricity consumption.

It is also key to monitor the energy exchange (in both ways) with the local grid, and to correlate possible energy imports from the grid with specific consumptions in the plant (ideally different than the electrolyser stack).

This comes with implications and additional costs on the overall electric design that should be integrated at early stages to facilitate its incorporation into the different production sites.

## 6.3.2 Water sourcing and treatment

Considering EVREC's project set-up and electricity supply and assuming that the power taken from the grid can be considered renewable, the sourcing of river water is not a contributor to the GHG Emissions of the produced hydrogen. If this statement was to evolve over time, the associated impact on EVREC products should be evaluated even if this is not expected to constitute a material contribution / risk for compliance.

## 6.3.3 Summary of data collection requirements

The minimum data points required to perform the GHG EMISSIONS calculation and PoS audit are given in Table 7.

| DATA POINT                                    | MEAN OF MEASUREMENT                                              | MIN. MEASUREMENT FREQUENCY                            | IMPACTS                       |  |  |
|-----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|--|--|
| Electricity consumption<br>Stack              | Power sub-metering                                               | Monthly (until 31/12/29)<br>Hourly (01/01/30 onwards) | Renewability<br>GHG EMISSIONS |  |  |
| Electricity consumption<br>electrolyser plant | Power metering<br>(incl. BOP, auxiliary, and water<br>treatment) | Batch total                                           | GHG EMISSIONS                 |  |  |
| Water input                                   | Flow metering                                                    | Batch total                                           | GHG EMISSIONS                 |  |  |
| Hydrogen production                           | Flow metering                                                    | Hourly                                                | Renewability<br>GHG EMISSIONS |  |  |
| External metering required                    |                                                                  |                                                       |                               |  |  |
| RES production                                | Power metering                                                   | Hourly                                                | Renewability                  |  |  |
| River water pumping                           | Power metering                                                   | Batch total                                           | GHG EMISSIONS                 |  |  |

## Table 7: Data collection requirements for hydrogen production.

## 6.4 Contracting

Power Purchase Agreements, regional specificities, and bidding zones


In the reference scenario there is no need for a PPA according to the REDII requirements and the DA, as the renewable electricity assets and the hydrogen plant are directly connected and owned by the same economic operator.

In the latest "Q&A Implementation of Hydrogen Delegated Acts" document annex published by the European Commission on 14/03/2024, the Commission provided guidance on the requirements for Environmental Attribute Certificates (EACs) in cases where the Delegated Acts do not mandate the conclusion of PPAs. This applies to projects like this one, which envisions a direct connection between RE plants and an electrolyser. EACs should not be sold to the market and must be cancelled for the purpose of RFNBO production to prevent double counting.

Additionally, in case some electricity to produce RFNBO is pulled from the local grid, EVREC needs to make sure that EACs are also purchased for that amount of power. EVREC should also make sure that the EACs are not sold for the power that is directly consumed for the production of RFNBO, to avoid any double counting.



# 7 Ammonia production

This chapter provides recommendations related to the certification of the ammonia production. The ammonia production plant considered in EVREC project is a greenfield ammonia production facility located in Newfoundland, Canada. The plant will produce RFNBO ammonia using the hydrogen produced by EVREC and nitrogen sourced from an ASU located within the premises of the ammonia plant.

# 7.1 Responsible custodians, roles and responsibilities

Table 8: Responsible custodians, roles, and responsibilities for ammonia production

| CUSTODIAN                                             | ROLE AND RESPONSIBILITIES                                                                                                                                                                                       |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen plant<br>operator: EVREC                     | <ul> <li>Provide RFNBO hydrogen to ammonia production.</li> <li>No need to provide Proof of Sustainability to the ammonia producer since it is the same economic operator.</li> </ul>                           |
| Ammonia fuel<br>producer and plant<br>operator: EVREC | <ul> <li>Perform mass balance. Mass balance period can be chosen – any period up to one calendar quarter<sup>16</sup>.</li> <li>Provide Proof of Sustainability to the downstream economic operator.</li> </ul> |

# 7.2 Operational considerations

The same general criteria for RFNBO compliance regarding energy used and GHG emission threshold as listed for hydrogen in section 6.2 apply for ammonia, with a few specific additional conditions:

- Ammonia can be produced based on different hydrogen production batches (i.e., coming with different GHG emissions).
- In that case, the percentage of RFNBO ammonia would correspond to the percentage of RFNBO hydrogen consumed for its production.

The foreseen project setup has several operational implications which EVREC should manage.

# 7.2.1 Synchronization of ammonia production with hydrogen production

In the EVREC project setup, there is hydrogen storage/buffer between the electrolyser and the ammonia synthesis plant. The ammonia plant should follow the production profile of the hydrogen production plant when possible, and the H<sub>2</sub> storage capacity should be used to run the Haber-Bosch reactor when hydrogen is not being produced (at all or in sufficient quantities). The operator of the ammonia production plant should evaluate whether the storage available is enough to operate the Haber-Bosch reactor and for how long.

<sup>&</sup>lt;sup>16</sup> While the mass balance period can be max. one calendar quarter (3 months), the maximum timeframe over which an average footprint may be calculated is up to 1 calendar month.



Good communication exchange needs to be in place between the scheduling of the hydrogen and ammonia plant, potentially with the implementation of production forecast models advising the supervisory controls on the overall complex how to ramp up/down the production of ammonia based on predicted H<sub>2</sub> production levels.

# 7.2.2 Nitrogen sourcing

The nitrogen used to produce RFNBO ammonia will be produced internally using an Air Separation Unit (ASU). For each batch of ammonia, the operator of the ammonia plant should ensure that enough nitrogen is produced to cover the entire batch of RFNBO ammonia.

As nitrogen does not constitute a relevant energy input, producing it using renewable or non-renewable power will not harm the ammonia renewability. However, the GHG emissions of the nitrogen will have to be considered.

For the base case scenario it was assumed that the ASU would run on the back-up power diesel generator (see Table 2), thus contributing to GHG emissions. Using renewable electricity, either via the direct connected plants or via the grid would therefore further reduce the GHG emissions of the ammonia.

# 7.2.3 GHG emissions monitoring & control

In the EVREC project set-up and strategy, this step is to be supplied with renewable energy. In case it is not, the ammonia conversion step would have a significant impact on the GHG emissions of the final product, leading to important compliance risks.

The operator of the ammonia synthesis plant would have to control the impact of consuming electricity from non-renewable sources on the GHG emissions of the ammonia, in such a way that the total batch GHG emission remains below the required limits.

As an illustration, Table 9 below summarizes the impact of switching part of the power consumption in the ammonia plant to non-renewable power (either back-up power generator or grid in case the >90% case is not achieved anymore). Results are expressed in qualitative evaluation of increase in the delivered H<sub>2</sub> footprint based on the power consumption the different steps represent.



| Scenario description                                    | Impact on H <sub>2</sub> footprint when delivered |
|---------------------------------------------------------|---------------------------------------------------|
| Average scenario for reference                          | -                                                 |
| Water cooling & treatment using non-<br>renewable power | +                                                 |
| BOP using non-renewable power                           | ++                                                |
| Ammonia synthesis using non-                            | +++                                               |
| renewable power                                         |                                                   |
| Ammonia liquefaction non<br>renewable power             | +                                                 |

#### Table 9: Impact of (partly) using non-renewable power in the ammonia production process

## 7.3 Monitoring and data collection requirements

The significant contributors to the GHG emissions of the ammonia are the emissions linked to the hydrogen production, electricity used in the ammonia production plant, and electricity used for the production of nitrogen. Therefore, each of these inputs should be monitored and data must be collected for auditing and certification purposes.

#### 7.3.1 RFNBO Hydrogen and syngas

The RFNBO hydrogen will come into the ammonia plant with a certain GHG emissions. For mass balancing purposes, it is crucial to know and show how much RFNBO hydrogen is being fed into the ammonia synthesis plant. This data is used to determine the amount of RFNBO ammonia which is produced in the batch and allocate the footprint accordingly. This data should be monitored on a batch total basis.

#### 7.3.2 Nitrogen sourcing

The nitrogen used in the production of RFNBO ammonia is produced by EVREC using an ASU. As such, it will have a GHG emissions according to the inputs used for its production (non-renewable electricity). To ensure compliance and reduce the GHG emissions of Nitrogen to a minimum (ideally zero), the operator of the ammonia plant should show that they source sufficient renewable electricity to produce enough nitrogen to be fed for the synthesis of RFNBO ammonia. This should be shown for each batch.

#### 7.3.3 Electricity consumption

The ammonia synthesis plant consumes 100% renewable electricity but could also be fed with non-renewable electricity (which comes with an associated GHG Emissions). The impact of this electricity on the GHG Emissions of the product is very large and should be limited as much as possible. In any case, the amount and source of electricity consumed during each batch should be tracked. Sub-metering should be installed to be able to track the energy sources used to produce ammonia and apply the appropriate GHG Emissions (zero in case enough renewable energy can be proved available through energy balancing). The cost of installing such sub metering equipment should be considered.



# 7.3.4 Summary of data collection requirements

The minimum data point required to perform the GHG EMISSIONS calculation and PoS audit are given in Table 10.

| DATA POINT                              | MEAN OF MEASUREMENT                                | MIN. MEASUREMENT<br>FREQUENCY | IMPACTS                                       |
|-----------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------------------------|
| Hydrogen in (RFNBO)                     | Flow metering                                      | Batch total                   | Renewability<br>Mass balance<br>GHG EMISSIONS |
| Nitrogen in (ASU)                       | Flow metering                                      | Batch total                   | Mass balance<br>GHG EMISSIONS                 |
| Electricity consumption                 | Power metering<br>(ammonia synthesis sub-metering) | Batch total                   | GHG EMISSIONS                                 |
| Ammonia out of HB synthesis             | Flow metering                                      | Batch total                   | Mass balance<br>GHG EMISSIONS                 |
| Ammonia out of<br>refrigeration turbine | Flow metering                                      | Batch total                   | Mass balance<br>GHG EMISSIONS                 |

#### Table 10: Data collection requirements for ammonia production.

# 7.4 Contracting

- Ammonia purchase agreement with an offtaker, including warranties to ensure the delivery of the RFNBO compliant ammonia in sync with the production capacity. Also, it should cover other crucial elements to demonstrate compliance, namely the GHG emissions, renewability, and data exchange agreements (PoS) between the ammonia plant operator and the offtaker.
- With the grid operator (The grid operator): in case some electricity to produce RFNBO is withdrawn from the local grid, as previously explained for hydrogen production, EVREC needs to make sure that Environmental Attributes Certificates (EACs) are also purchased for that amount of power. EVREC should also make sure that the EACs are not sold for the power that is directly consumed for the production of RFNBO, to avoid any double counting.



# 8 Ammonia storage, shipping, and distribution

This chapter will provide the recommendations related to the certification of the ammonia in the port of destination. The ammonia is stored cryogenically in liquid form at the production plant site before being shipped, also in liquid form, to the port of destination. In the current setup the ship is fueled using shipping VLSFO and travels between Canada and Europe.

#### 8.1 Responsible custodians, roles and responsibilities

Table 11: Responsible custodians, roles, and responsibilities for ammonia storage, shipping, and distribution.

| CUSTODIAN                                    | ROLE AND RESPONSIBILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Ammonia producer: EVREC                      | <ul> <li>Provide downstream economic operators with the PoS.</li> <li>Depending on how the supply chain is organized (degree of vertical integration) it is either the ammonia producer or the downstream operator that is responsible for performing the mass balance and providing calculations and evidence on the emissions intensity of the activities downstream of ammonia production. In case third parties are contracted to perform certain activities (e.g., transport, storage, cracking), it must be ensured that the emissions related to these outsourced activities are provided to either the ammonia producer upstream, or downstream to the next economic operator (e.g., cracking and end-use), depending on the organization of supply chain in question.</li> </ul> |  |  |
| Transport operator: TBD                      | <ul> <li>In case the transport operator has the responsibility of performing the mass balance:</li> <li>Perform mass balance and emissions calculation (a vessel is considered a mass balance unit). Transport emissions between the ammonia producer and storage/conversion unit are typically covered as upstream transport emissions by the operator of the downstream activity(ies).</li> <li>Provide PoS to the next economic operator downstream.</li> </ul>                                                                                                                                                                                                                                                                                                                        |  |  |
| Storage operator: tbd                        | <ul> <li>In case the storage operator has the responsibility of performing the mass balance:</li> <li>Perform mass balance and emissions calculation.</li> <li>Provide PoS to the next economic operator downstream.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Conversion unit operator (e.g.,<br>cracking) | Similar to storage operator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

# 8.2 Operational considerations

The shipping, cracking, and distribution of the ammonia represent a significant contribution to EVREC's ammonia GHG emissions. As such, these specific steps that may be out of EVREC's direct control shall be closely monitored and, in particular,:

- For shipping:
  - Use of large vessels and import payload should be preferred options.
  - Use of low-carbon & renewable fuels shall be encouraged.
  - Use of optimized routes shall be encouraged.
  - Use of eco-speed mode shall be encouraged.
- For cracking (if such):



- Use of renewable energy inputs for heat and electricity for cracking shall be encouraged to achieve 100% RFNBO hydrogenError! Bookmark not defined.
- For distribution:
  - Efficient distribution storage shall be preferred options:
    - Ammonia rather than hydrogen.
    - Trains & Barges rather than truck.
    - Pipelines rather than vehicles.

#### 8.3 Monitoring and data collection requirements

Along with the different parameters listed above, a specific data & evidence requirements shall be added to the requirements list defined for partners across the value chain allowing for a sanity check prior to operations and smooth data collection process after the beginning of production.

| DATA POINT                                 | MEAN OF MEASUREMENT | MIN. MEASUREMENT<br>FREQUENCY   | IMPACTS       |
|--------------------------------------------|---------------------|---------------------------------|---------------|
| Power consumption<br>(storage facility)    | Power metering      | Batch total over storage period | GHG EMISSIONS |
| Power consumption (loading terminal)       | Power metering      | Shipload total                  | GHG EMISSIONS |
| Power consumption<br>(offloading terminal) | Power metering      | Shipload total                  | GHG EMISSIONS |
| Fuel consumption<br>ammonia ship           | Mass-flow metering  | Round trip                      | GHG EMISSIONS |
| Ammonia loaded                             | Mass-flow metering  | Shipload total                  | GHG EMISSIONS |
| Ammonia offloaded                          | Mass-flow metering  | Shipload total                  | GHG EMISSIONS |

Table 12: Data collection requirements for ammonia storage, shipping, and distribution

# 8.4 Contracting

- Agreement between the ammonia producer and downstream economic operator stipulating the relevant conditions are needed, ensuring that the product received fulfills REDII requirements. This should cover the GHG emissions, renewability, and data exchange agreements (PoS) between the ammonia plant and downstream economic operator.
- Contracts with third parties (e.g., distributors) are needed to ensure that mass balance and emissions calculations related to the outsourced activities are performed correctly and provided timely.



# 9 Downstream considerations

The REDII specifies a well-to-grave approach, which includes the final user. This chapter details the consideration for the downstream use of the ammonia or hydrogen.

## 9.1 Responsible custodians, roles, and responsibilities

Table 13: Responsible custodians, roles, and responsibilities for downstream uses.

| CUSTODIAN  | ROLE AND RESPONSIBILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Final user | The final user of the compliant product will demand the PoS containing all the necessary information<br>of the upstream processes related to the received (batch of) product. The final user would need to<br>report the GHG emissions of using the product to the authorities (in case of emissions) and typically<br>surrender the PoS to the respective authorities to fulfill its regulatory obligation.<br>Various EU Member State have or are considering mandates for the use of RFNBO in transport (REDII)<br>and in industry (REDIII). Obligations under REDII are typically on fuel suppliers, not on end-users of the<br>fuel. Fuel suppliers ('obligated parties') will need to surrender the PoS to the relevant authority upon<br>delivery ('booking the volumes in a register'). REDIII introduces mandatory targets for the use of<br>RENBOs in industry, and the responsibility of surrendering the PoS will be directly on them |

# 9.2 Contracting

 Offtake agreement between the relevant upstream economic operator and final user are needed, stipulating the relevant conditions ensuring that the product received fulfills REDII requirements covering the GHG emissions, renewability, and data exchange agreements (PoS) between the ammonia plant and downstream economic operator.

#### 9.3 Considerations on cracking

Cracking ammonia into hydrogen is crucial in RFNBO processing. However, the energy sources used in this process greatly impact the hydrogen's renewability. According to the European Commission's guidelines from 14/03/2024, the hydrogen produced must have its energy content compared to the ammonia input, and any additional energy, which is considered a relevant energy input, from non-renewable sources affects its RFNBO classification.

If natural gas (NG) is used in the cracking process, it contributes to the total energy input, and the RFNBO share of the produced hydrogen is determined by the ratio X/(X+Y), where X is the ammonia energy and Y is the NG energy. On the other hand, if ammonia (NH3) is used as fuel in cracking and is 100% RFNBO, then the resulting hydrogen will also be 100% RFNBO.

The primary risks associated with using non-renewable fuels in the cracking process include the loss of RFNBO classification, an increased GHG emissions, and potential regulatory and market risks. Non-renewable fuels reduce the RFNBO share, affecting compliance with regulations, and may lead to penalties and decreased market



acceptance. Thus, using renewable energy in the cracking process is essential to maintain RFNBO status, minimize environmental impact, and comply with regulations.



# 10 References

#### Documents shared by EVREC:

- 1. Project Update 20240506.ppt
- 2. POSITION PAPER PROJECT DEFINITION DESIGN 20240303.doc
- 3. J-001309-PR-HMB-20003, Heat and Material Balance, Rev 01.pdf
- 4. EVREC MASTER SCHEDULE FINAL (19.05.2024).mnp
- 5. PFDs.pdf

#### Documents delivered by Hinicio:

- 6. 240521\_EVREC\_H2\_NH3\_Inputs.xls
- 7. 240611\_EVREC RFNBO\_Project\_Concept\_Evaluation\_shared.pdf
- 8. 2400614\_EVREC\_HINICIO\_Pre\_cert\_scenario\_table.pdf

#### Documents delivered by Bureau Veritas:

1. BV\_Hinicio\_Pre-audit CertifHy RFNBO EVREC\_ Report audit review\_V2.pdf

#### Other documents:

- 1. Directive (EU) 2018/2001
- 2. Directive (EU) 2023/2413
- 3. Delegated regulation C(2023)1086
- 4. Delegated regulation C(2023)1087
- 5. Q&A implementation of hydrogen delegated acts version of 14/03/2024



# 11 Annex

- 1. Analysis on the bidding zone concept applied to Newfoundland
- 2. Illustration of the impact of latest Q&A document published by the European Commission on ammonia cracking



Annex 1 – Analysis on the bidding zone concept applied to New Foundland

# Bidding zone interpretation framework

The Commission provided additional guidance on how to read bidding zones outside the EU



Bidding zones are the largest geographical area in which bids and offers from market participants can be matched without the need to attribute cross-zonal capacity. The European Commission has provided a simple process to evaluate this concept outside of the European Union, summarized in the picture above.

Applied to the Newfoundland, it has emerged that the grid in Newfoundland and Labrador is fully integrated and operated by the grid operator, therefore complying with the methodology outlined by the Commission, which foresees that each separated network composing a country grid can be considered a bidding zone. The specific characteristics of the considered grid can be found in the picture below.



# Applied to Newfoundland

The whole Newfoundland region should be considered a single bidding zone for the purpose of RFNBO production, matching the >90% renewable condition



As can be seen from the picture above, Newfoundland and Labrador grid has had a percentage of RE in the mix higher than 90% since 1990. This allows EVREC to withdraw RE with 0 gCO<sub>2</sub>e/kWh for an amount of full-load hours equivalent to the percentage of RE in the mix for the previous year. Once the 90% threshold is reached, this condition is considered matched for a period of 5 years. Moreover, the current grid development strategy outlined in the picture below should allow to maintain this characteristic over time, allowing EVREC to benefit from renewable power directly from the grid.



# Applied to Newfoundland

Looking forward, no additional thermal electricity production capacity should be developed allowing to maintain the >90% RE condition



Source: <u>Reliability and Resource Adequacy Study</u> – 2022 Update, Newfoundland and Labrador Hydro

Hinicio

#### Key considerations

- Based on publicly availableinformation, the plan is to reduce the number of emitting resources generating electricity in Newfoundland and Labrador.
- According to the latest available data, the penetration of renewable energy (RE) in the mix is currently over 90%. With a decrease in the installed capacity of emitting resources, it is reasonable to expect that the percentage of RE in the mix will remain above 90% in the coming years.

13



Annex 2 - Illustration of the impact of latest Q&A document published by the European Commission on ammonia cracking.

As stated in the latest "Q&A implementation of hydrogen delegated acts" document published by the European Commission on the 14/03/2024 in question 57, in the case of cracking ammonia into hydrogen, since the energy content of the hydrogen coming out of the cracking process is higher than the energy content of the ammonia used as a feedstock, the electricity and heat used in the cracking process that results in this higher energy content must be considered as relevant energy. Therefore, nonrenewable energy and heat sources will have an impact in the renewability of the produced RFNBO hydrogen.

Q57: "One way to transport renewable hydrogen over long distance is to ship it in the form of derivatives (e.g. ammonia, methanol or methane) and to reconvert it into renewable hydrogen at the place of consumption. Is the energy used for converting hydrogen derivatives considered as relevant energy?"

A: "As set out under point 3 of the GHG methodology, only electricity and heat that is adding to the heating value of the fuel is considered as relevant energy. Where the use of heat for reconversion of derivatives does not increase the heating value of the products, the share of RCF and RFNBO is not affected. To establish whether electricity and heat that are used in a process are adding to the heating value of the fuel, the heating value of the derivative that enters the process and qualifies as an RFNBO should be compared to the heating value of the hydrogen the process yields. If the heating value of the hydrogen that yields from the process exceeds the heating value of the RFNBO input, the heating value is increased and accordingly the electricity and heat is adding to the heating value of the fuel and must be considered as relevant energy."

# Qualitative description of the impact on an actual cracker based on hypotheses shared by EVREC.

# Case 1 - If NG is used as fuel in cracking

In that case, the NG would be considered part of the H<sub>2</sub> relevant energy inputs (see definitions below) and you would have to consider an energy balance on the cracking unit taking into account:

- The RFNBO energy input going in the cracker in the form of ammonia (X GJ).
- The external energy input provided by the natural gas (Y GJ).
- Define the RFNBO energy share going in the cracker (X/(X+Y)%)
- This will give you the share of RFNBO hydrogen share outside the cracker (X/(X+Y)%).

# Case 2 - If NH3 is used as fuel in cracking

In that case, if your ammonia is 100% RFNBO, 100% of the resulting hydrogen is RFNBO.



# 12 Definitions

# **Voluntary Scheme**

A voluntary scheme refers to a system or a program where organizations or individuals voluntarily choose to adhere to certain standards, guidelines or requirements related to hydrogen production, distribution or utilization. In the context of this study, we're talking about the CertifHy<sup>™</sup> Voluntary Scheme, which is pending recognition by the European Commission as EU Voluntary Scheme for RFNBO (renewable hydrogen and derivatives used as fuel for the transport sector).

# **Delegated Act**

In the context of European legislation, a "delegated act" refers to a legal mechanism that allows the European Commission, the executive arm of the European Union (EU), to supplement or amend certain non-essential elements of a legislative act adopted by the European Parliament and the Council of the EU. The European Parliament and the Council delegate specific powers to the Commission to adopt delegated acts within the framework of a legislative act. While primary legislation establishes the main rules and objectives, certain technical or detailed provisions may need to be specified or adjusted after the primary legislation is in force. Delegated acts are used for this purpose. They allow the Commission to fill in the gaps or make specific adjustments within the parameters set by the primary legislation. In the context of this report we mainly refer to the delegated acts titled: "Supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council by establishing a Union methodology setting out detailed rules for the production of renewable liquid and gaseous transport fuels of nonbiological origin" and "supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council by establishing a minimum threshold for greenhouse gas emissions savings of recycled carbon fuels and by specifying a methodology for assessing greenhouse gas emissions savings from renewable liquid and gaseous transport fuels of non-biological origin and from recycled carbon fuel"

# Mass balance

Mass balance is a principle used to track the flow and distribution of materials or substances within a system. It is often applied in situations where it's challenging to physically segregate or trace individual components but where the overall quantity or quality of the substances is important for compliance, sustainability, or certification purposes. In a simplified explanation, mass balance involves accounting for inputs, outputs, and internal transfers of a substance within a system. This can help ensure that the sum of inputs, outputs, and internal transfers matches the overall changes in the system. The concept can be extended to the certification of sustainable products, such as biofuels or renewable energy sources and their derived products.

# Hinicio EVREC Project critical review against CertifHy™ EU RFNBO compliance requirements

## Reference: 797257/22772360

| Version | Date       | Written by | Verified by |
|---------|------------|------------|-------------|
| Draft   | 10/07/2024 | O. AZZOUZI | V. ROBIN    |

**Bureau Veritas Exploitation – Technical & Decarbonization Center** 

Tour ALTO 4 Place des saisons 92400 Courbevoie

This document is the property of Bureau Veritas Exploitation. It must not be stored, reproduced or disclosed to others without written authorization from the Company.



# TABLE OF CONTENT

| TABLE OF CONTENT                                     | 2  |
|------------------------------------------------------|----|
| I. CONTROL DOCUMENT                                  | 3  |
| I.1 LEVEL OF ASSURANCE                               | 3  |
| II. ABBREVIATIONS                                    | 4  |
| III. REFERENCES                                      | 5  |
| IV. INTRODUCTION                                     | 6  |
| V. DESCRIPTION OF THE PROJECT                        | 7  |
| VI. METHODOLOGY OF THE ASSESSMENT                    | 9  |
| VI.1 Sustainability requirements                     | 9  |
| VI.1.1 Additionality                                 | 9  |
| VI.1.2 Temporal correlation                          | 9  |
| VI.1.3 Geographical correlation                      | 10 |
| VI.1.4 Avoiding double counting                      | 10 |
| VI.2 GHG requirements                                | 10 |
| VI.3 Mass balance                                    | 11 |
| VI.4 Traceability and chain of custody               | 11 |
| VI.5 Management system                               | 11 |
| VII. SCOPE AND BOUNDARIES OF THE ANALYSIS            | 13 |
| VIII. DETAILED EVALUATION                            | 16 |
| VIII.1 Evaluation of sustainability requirements     | 16 |
| VIII.1.1 Additionality                               | 16 |
| VIII.1.2 No subsidies for RE producer                | 16 |
| VIII.1.3 Temporal Correlation                        | 16 |
| VIII.1.4 Geographical correlation                    | 16 |
| VIII.2 GHG requirements                              | 17 |
| VIII.2.1 Global remarks not affecting the conformity | 18 |
| VIII.2.2 Scenario 1: Ammonia for Bunkering fuel      | 18 |
| VIII.2.3 Scenario 2: Ammonia for industry            | 19 |
| VIII.3 Mass balance                                  | 21 |
| VIII.4 Traceability and chain of custody             | 22 |
| VIII.5 Management system                             | 22 |
| IX. CONCLUSION                                       | 23 |

# Bureau Veritas Exploitation – Technical & Decarbonization Center

Tour ALTO 4 Place des saisons 92400 Courbevoie

This document is the property of Bureau Veritas Exploitation. It must not be stored, reproduced or disclosed to others without written authorization from the Company.



# I. <u>CONTROL DOCUMENT</u>

| Identification |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| Client         | EVREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |
| Description    | EVREC is a green energy project development company with<br>goals aligned to those of the Canadian Government to set the<br>country on a path to meet climate change goals of net-zero<br>greenhouse gas emissions by 2050 (Government of Canada<br>2023). The management and shareholders of EVREC have both<br>a long track record of investing in Canadian companies that<br>support the energy transition, and the proven capability of<br>executing and delivering large industrial infrastructure and energy<br>projects. |     |  |
|                | Bureau Veritas Exploitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion |  |
| Name           | Victor ROBIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |
| Title          | Decarbonisation Project<br>Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
| Location       | Tour Alto, 4 place des saisons – 92400 Courbevoie, FRANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |  |
| Phone          | +33 7 88 76 62 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |
| E-mail         | victor.robin@bureauveritas.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |

| Configuration |                                                   |            |          |             |
|---------------|---------------------------------------------------|------------|----------|-------------|
| Version       | Version Date Written by Verified by Modifications |            |          |             |
| Draft         | 05/07/2024                                        | O. AZZOUZI | V. ROBIN | Draft issue |

# I.1 LEVEL OF ASSURANCE

The level of assurance was used to determine the depth of detail that the pre-audit team placed in the validation plan to determine if there are any errors, omissions, or misrepresentations as define in ISO 14064-3.

In the context of our compliance analysis with the CertifHy EU RFNBO, regarding the provided documentation and the purpose of this pre-audit, the absence of on-site visit as the project is at design stage, we have opted for <u>limited insurance</u> in the present report.



# II. ABBREVIATIONS

- DA1 : RED II 1st Delegated Act
- **DA2** : RED II 2<sup>nd</sup> Delegated Act
- EU : European Union
- **PCF** : Product Carbon Footprint
- PoS : Proof of Sustainability
- **PPA** : Power Purchase Agreement
- **RED** : Renewable Energy Directive
- RFNBO : Renewable Fuel of Non-Biologic Origin
- CFP : Carbon Footprint of Products



# III. <u>REFERENCES</u>

[1] **RED II**: DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources, Official Journal of the European Union, 2018.

[2] **RED II 1**st **Delegated Act**: COMMISSION DELEGATED REGULATION (EU) 2023/1184 of 10 February 2023 supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council by establishing a Union methodology setting out detailed rules for the production of renewable liquid and gaseous transport fuels of non-biological origin, Official Journal of the European Union, 2023.

[3] **RED II 2nd Delegated Act**: COMMISSION DELEGATED REGULATION (EU) 2023/1185 of 10 February 2023 supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council by establishing a minimum threshold for greenhouse gas emissions savings of recycled carbon fuels and by specifying a methodology for assessing greenhouse gas emissions savings from renewable liquid and gaseous transport fuels of non-biological origin and from recycled carbon fuels, Official Journal of the European Union, 2023.

The other references are given in section VII.



# IV. INTRODUCTION

Published in December 2018, the Renewable Energy Directive II (RED II) is a framework defined by the European Commission, aiming to shape the continent's approach to sustainable energy. Enacted as part of the EU's broader commitment to combat climate change and transition towards a greener future, RED II builds upon its predecessor by setting ambitious targets for renewable energy consumption and production. This directive not only strives to increase the share of renewables in the overall energy mix but also introduces measures to enhance energy efficiency and promote the use of advanced biofuels.

While the main document primarily focuses on biofuels, two delegated acts were published in February 2023 addressing criteria for Renewable Fuels of Non-Biologic Origin (RFNBO). These fuels rely mainly on hydrogen by electrolysis. E-methanol, e-ammonia, e-methane and hydrogen are examples of RFNBO. The criteria mentioned in both DA must be met by all RFNBO producers to comply with RED II and, consequently, to avail themselves of all related benefits.

EVREC, a Canada-based green ammonia project developer, develops a project to produce RFNBO ammonia for the European markets. They chose the certification scheme CertifHy EU RFNBO which allows, prior to the audit, a pre-audit at design stage in order to have their design assessed.

This report provides the methodology, the details and the results of the pre-audit.



# V. DESCRIPTION OF THE PROJECT

EVREC BV's project is a green ammonia production unit, including the H2 production by an electrolyser. The basic flow diagram is presented below:



## Figure 1 : Flows diagram of EVREC project

The EVREC project consist of an off-grid RFNBO production plant that plans to produce 167 kt/year of green H2 and 940 kt/year of green NH3, which will then be transported via a 3 km ammonia pipeline to the port of Botwood, where they will be exported by sea to European hubs. For the purpose of the exercise, all calculations are made to Hamburg as the farthest considered export port.

The production process will run on renewable electricity from a > 3 GW RE hybrid wind power plant, a 150 MW solar photovoltaic plant and a battery directly connected to the plant for the production of H2 (by water based-electrolysis) and NH3 (by the Haber-Bosh process). This electricity plant will be directly connected to the hydrogen production assets.

The project is located in Botwood (Canada), as shown in the figure below.

The power and RFNBO plants are located in Botwood.

As part of the EVREC project, three downstream scenarios have been delineated, contingent upon the sector to which the end-use of production in the form of ammonia or hydrogen (resulting from ammonia cracking) is directed.

- 1. Ammonia for bunkering fuel use in maritime;
- 2. Ammonia for industry;
- 3. Hydrogen for industry.





Figure 2: Location of EVREC project supply chain

This project aims to start operating by 2030.



# VI. METHODOLOGY OF THE ASSESSMENT

The methodology consists of verifying whether all the requirements of the CertifHy EU RFNBO certification scheme are met. This certification scheme is currently being reviewed by the European Commission in order to become an official scheme which certifies that a production is compliant with RED II, DA1 and DA2 requirements. The used version of the scheme documentation is the version 1.0 published February 28th, 2023.

- Sustainability
- GHG emissions
- Mass balance
- Traceability and chain of custody
- Management system

Those requirements are briefly presented below. More information can be found in CertifHy EU RFNBO scheme guidelines, and in reference documents (see Chapter II. Of the current report).

# VI.1 Sustainability requirements

The overarching concept of the first delegated act is that the electricity used for RFNBO production must be renewable (cf. *Article 1* [2]). Various cases of renewable electricity sourcing may be accepted such as:

- Direct connection to an installation generating renewable electricity
- Connection to the grid
- With or without a PPA

Depending on the case of the project, different sustainable requirements may apply:

#### VI.1.1 Additionality

The additionality criterion requires the applicant to demonstrate the renewable electricity source has started operating maximum 36 months before the RFNBO production. The aim of this requirement is to prevent RFNBO producer to use a source of renewable energy already claimed for another use. As the electrification of many activities are an important lever to reduce GHG emissions, RFNBO producers shall not be in competition with another use of this already existing renewable energy source.

In case of PPA, the contracting renewable electricity producer shall not have received any aid except for some specific cases. This requirement does not apply for projects using direct connection to the electricity plan such as EVREC's project.

#### VI.1.2 Temporal correlation

For grid stability purpose, electricity demand and supply should meet as much as possible. The same rule applies for the renewable electricity production and the RFNBO production, which stands are demand in that situation.



As a consequence, RED II DA1 requires a monthly correlation between electricity production and consumption until end of 2029, and hourly correlation from early 2030.

However, the electricity can also be stored in a relatively new storage asset. In that case, the storage asset shall be just after the electricity plant in the network ("behind the meter"), and the temporal correlation is to be met between the production and the storage. Moreover, detailed data are to be provided to ensure that the electricity stored in the storage asset comes from the renewable plant and not from the grid.

This requirement does not apply for projects using direct connection to the electricity plan such as EVREC's project

# VI.1.3 Geographical correlation

For the same purpose of simplifying the grid management by relevant authorities, and to ensure in a way that the produced electrons could be those used, geographical correlation require electricity production and consumption to be in the same bidding zone or in bidding zones that are interconnected.

The bidding zone is the largest geographical area within which market participants are able to exchange energy without capacity allocation.

This requirement does not apply for projects using direct connection to the electricity plan such as EVREC's project.

#### VI.1.4 Avoiding double counting

One of the key requirements of the RED for accounting for the consumption of renewable energy is to avoid double counting. To do so, any energy unit claimed renewable for the production of RFNBO should be backed by the cancellation of a certification (Guarantee of Origin, Renewable Energy Certificate, etc.) or it can be proven that the issuance of certificate for renewable electricity is not possible in the region.

# VI.2 GHG requirements

While DA1 relied on primarily qualitative data, the criteria for DA2 are quantitative. The RFNBO, as an alternative to a reference fuel, must be less harmful to the climate, i.e., emit fewer greenhouse gases. According to DA2, "The greenhouse gas emissions savings from the use of recycled carbon fuels shall be at least 70 %" (*Article 2* [3]).

The reference value set by the DA2 is 94gCO2eq/MJ of fuel.

#### As a consequence, the RFNBO carbon intensity must be below 28.2 gCO2eq/MJ of fuel.

The methodology for calculating the equivalent CO2 emissions of RFNBO is provided in the Annex of DA2. The result is obtained using the following formula.

$$\mathbf{E} = e_i + e_p + e_{td} + e_u - e_{ccs}$$

Where:



E = total emissions from the use of the fuel (gCO2eq/MJ of fuel)

- $e_i = e_{elastic} + e_{rigid} e_{ex-use}$ : emissions from supply of inputs (gCO2eq/MJ of fuel)
  - $e_{elastic}$  = emissions from elastic inputs (gCO2eq/MJ of fuel)
  - $e_{rigid}$  = emissions from rigid inputs (gCO2eq/MJ of fuel)
  - $e_{ex-use}$  = emissions from inputs' existing use or fate (gCO2eq/MJ of fuel)
- $e_p$  = emissions from processing (gCO2eq/MJ of fuel)
- $e_{td}$  = emissions from transport and distribution (gCO2eq/MJ of fuel)
- $e_u$  = emissions from combusting the fuel in its end-use (gCO2eq/MJ of fuel)
- $e_{ccs}$  = emission savings from carbon capture and geological storage (gCO2eq/MJ of fuel)

# VI.3 Mass balance

In the field of RFNBO, physical segregation of products with different sustainability properties is not required. The mass balance system is accepted. This system allows the consumer to blend a certified RED II RFNBO with a non-certified RED II fuel without losing the sustainability attribute of the certified fuel. It's the certification of the molecule that matters, and it must be tracked throughout the value chain. However, this system poses risks of double counting certified fuel. That's why a verification of the mass balance throughout the entire value chain is necessary.

# VI.4 Traceability and chain of custody

For the production of the RED II-compliant RFNBO to be certified by the CertifHy EU RFNBO certification scheme, the whole supply chain must also be RED II compliant.

The following elements of the supply chain are subject to certification under the CertifHy EU RFNBO: RFNBO producers, processing unit, storage units, and traders. They must get certified in order to issue a valid document to the next economic actor in the value chain: a Proof of Sustainability.

This document is always linked to a specific product consignment. It is a delivery document containing relevant information about the RFNBOs that must be issued by the supplier for each delivery of RFNBO volumes.

Where a consignment of fuel is used to comply with an obligation placed on a fuel supplier by an EU Member State, it shall be considered to be withdrawn from the mixture of the mass balance.

#### VI.5 Management system

The management system describes the scope of responsibilities and internal company processes and procedures for ensuring that an economic operator is able to implement and update all of the requirements for achieving the objectives of CertifHy EU RFNBO scheme.

The management system must ensure that good management practices with respect to sustainability, greenhouse gas emissions, traceability and chain of custody requirements are applied at every critical control point. All the elements of the supply chain must ensure that their management systems cover these requirements. The management team of the economic operator must commit itself in writing to



complying with CertifHy EU RFNBO requirements, and this commitment has to be made available to the employees, suppliers, customers and other interested parties.

The purpose of the management system requirements is to inspire all the employees and stakeholders toward the sustainability requirements and the purpose of such a certification.



# VII. SCOPE AND BOUNDARIES OF THE ANALYSIS

As EVREC project is at design stage, a pre-audit was done. Therefore, no on-site visit happened, nor analysis, actual production data and consumption. The CertifHy EU RFNBO scheme requirements have only been checked on the design stage in accordance with the received documents that are detailed below.

| Nature of<br>document                                             | Name of file                                                               | Reception<br>date | Reference value<br>in this report |
|-------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|-----------------------------------|
| Project<br>concept<br>evaluation                                  | 240621_EVREC<br>RFNBO_Project_Concept_Evaluation_WP1_S<br>ensitivities.pdf | 24/06/2024        | [4]                               |
| Project<br>overview                                               | POSITION PAPER PROJECT DEFINITION<br>DESIGN 20240303.docx                  | 24/06/2024        | [5]                               |
| Project status                                                    | Project Update 20240506.pptx                                               | 24/06/2024        | [6]                               |
| Heat and<br>Material<br>Balance                                   | J-001309-PR-HMB-20003, Heat and Material<br>Balance, Rev 01.pdf            | 24/06/2024        | [7]                               |
| Process flow<br>diagram<br>Project legend                         | J-001309-PR-PFD-20010-PFD Project Legend<br>Rev 01.pdf                     | 24/06/2024        | [8]                               |
| Process flow<br>diagram of<br>water<br>treatment<br>system        | J-001309-PR-PFD-20011-PFD Water<br>Treatment System Rev 01.pdf             | 24/06/2024        | [9]                               |
| Process flow<br>diagram of<br>electrolyser<br>package             | J-001309-PR-PFD-20012-PFD Electrolyzer<br>Package Rev 01.pdf               | 24/06/2024        | [10]                              |
| Process flow<br>diagram of<br>hydrogen<br>purification<br>package | J-001309-PR-PFD-20013-PFD Hydrogen<br>Purification Rev 01.pdf              | 24/06/2024        | [11]                              |
| process flow<br>diagram of<br>hydrogen<br>compression<br>train    | J-001309-PR-PFD-20014-PFD Hydrogen<br>Compression Rev 01.pdf               | 24/06/2024        | [12]                              |
| Process flow<br>diagram of<br>hydrogen<br>storage                 | J-001309-PR-PFD-20015-PFD Hydrogen<br>Storage Rev 01.pdf                   | 24/06/2024        | [13]                              |



| Process flow<br>diagram of<br>ammonia<br>production                                     | J-001309-PR-PFD-20016-PFD Ammonia<br>Production Rev 01.pdf       | 24/06/2024 | [14] |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|------------|------|
| Process flow<br>diagram of<br>ammonia<br>storage and<br>export                          | J-001309-PR-PFD-20017-PFD Ammonia<br>Storage & Export Rev 01.pdf | 24/06/2024 | [15] |
| Carbon<br>Footprint (CFP)<br>calculation -<br>Ammonia for<br>Bunkering fuel<br>scenario | 240624_EVREC_H2_NH3_tool_v4.0_Scenari<br>o1.xlsx                 | 24/06/2024 | [16] |
| Carbon<br>Footprint (CFP)<br>calculation -<br>Ammonia for<br>industry<br>scenario       | 240624_EVREC_H2_NH3_tool_v4.0_Scenari<br>o2.xlsx                 | 24/06/2024 | [17] |
| Carbon<br>Footprint (CFP)<br>calculation -<br>Hydrogen for<br>industry<br>scenario      | 240624_EVREC_H2_NH3_tool_v4.0_Scenari<br>o3.xlsx                 | 24/06/2024 | [18] |
| Project<br>commissioning<br>schedule                                                    | EVREC - MASTER SCHEDULE - FINAL<br>(19.05.2024).pdf              | 01/07/2024 | [19] |
| Preparation of<br>conceptual<br>design - report                                         | OWC-038968-001-REP001-A.pdf                                      | 08/07/2024 | [20] |
| Draft<br>Environmental<br>assessment<br>Registration<br>Document                        | Draft Botwood EARD - do not copy June 13<br>2024.pdf             | 08/07/2024 | [21] |

#### Table 1: Received documentation for the preaudit

The results of this analysis do not ensure that the operational stage will also be certified, nor eligible to be certified. Any change in the design invalidates the current analysis.

The scope of EVREC encompasses the production of ammonia and its subsequent export by sea to the European port hubs. To remain conservative, the port of Hamburg is considered for all the scenarios.



Upon reaching the destination port hub (i.e. Hamburg port), EVREC considered two modes of distribution (barge and pipeline) to deliver the product to the offtake point, as developed in the documents associated with the CFP calculation [7].



# VIII. DETAILED EVALUATION

# VIII.1 Evaluation of sustainability requirements

As stated in RED II DA1 on the rules requirements for counting electricity as fully renewable, electricity is considered fully renewable when it is obtained from a direct connection to an installation producing renewable electricity.

In fact, the ammonia production project by EVREC is directly connected to the renewable power facility. Electricity will be generated by a hybrid power plant with a capacity of > 3 GW wind power, a 150 MW photovoltaic solar power plant, and an electric battery that is directly connected to the H2 and NH3 production plant.

As part of EVREC project, relevant evidence of direct connection to the renewable energy system has been provided by EVREC as detailed in the documents [1]. Bureau Veritas considers that the evidence provided is compliant with EU requirements.

As the electricity plant will be connected to the grid, smart metering is mandatory to ensure that the consumed electricity comes from the plant itself and not from the grid. EVREC will have to implement smart metering to fulfill the RED requirements.

## VIII.1.1 Additionality

This criterion description can be found in chapter V.1.1.

The green ammonia production plant is expected to start in 2030 (p. 2, Annex [6] and [19]) and will be powered by direct renewable electricity connection. The date when the electricity plant will come into operation is expected to be in 2030.

#### Considering to the above-mentioned valuation, the additionality is considered complied with.

#### VIII.1.2 No subsidies for RE producer

This criterion is only required if the electricity used to produce the RFNBO is taken from the grid.

The EVREC project does not involve the use of electricity from the grid and, consequently, the conditions linked to underlying operating aid or investment aid that installation generating renewable electricity may receive is not applicable.

#### VIII.1.3 Temporal Correlation

As the EVREC project does not involve the use of electricity from the grid (i.e. only direct connection), the temporal correlation criterion is not applicable according to the RED II DA 1 descriptions.

#### VIII.1.4 Geographical correlation

As the EVREC project does not involve the use of electricity from the grid (i.e. only direct connection), the geographical correlation criterion is not applicable, according to the RED II DA 1 descriptions.



Considering to the above-mentioned valuation, the sustainability criteria is considered by Bureau Veritas to be in line for compliance with RED II requirements.

#### VIII.2<u>GHG requirements</u>

This criterion is described in VI.2.

Based on the data provided by Hinicio, Bureau Veritas has verified the method and result of GHG emissions quantification on a life-cycle basis in accordance with the CertifHy EU RFNBO scheme requirements.

The GHG emissions calculations inform the validation decision and ensure alignment of the ammonia carbon footprint with the GHG emissions threshold (28,2 gCO2eq/MJ) defined by RED II.

The carbon footprint pre-audit of the EVREC project, was conducted remotely and focused on the verification of the CFP calculation file associated with the EVREC project scenarios. The GHG emissions calculation file supplied by Hinicio are reported in the appendix [16], [17] and [18].

EVREC scope is not covering the shipping and downstream part of the supply chain. Therefore, for actual certification, EVREC scope of calculation will be limited to the production of the ammonia. However, in order to comply with the required scope of GHG emissions calculation and evaluate EVREC's products compliance on a well-to-gate scope, assumptions have been taken to cover the maritime transport and downstream processing of the fuel.

The shipping to Hamburg is assumed covered with a Middle-size Gas Carrier (MGC) running on Heavy Fuel Oil (HFO) with a 90% payload. Roundtrip emissions have been considered assuming that the vessel would return empty, hence, providing a conservative estimate of the associated emissions.

EVREC has considered different options for distribution and offtake use scenarios, as summarized in the table 2 below. As those value chain links are to be included in the calculation, the results of these different scenarios are to be checked.

| Scenario | Downstream<br>distribution                                                     | Molecule                                                                                    | Offtake end-use       |
|----------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|
| 1        | Barge – 20 km                                                                  | Ammonia                                                                                     | Bunkering fuel        |
| 2        | Pipeline – 100 km                                                              | Ammonia                                                                                     | Ammonia for industry  |
| 3        | Pipeline – Ammonia<br>100km<br>Pipeline – Hydrogen 200<br>km after compression | Hydrogen<br>(Resulted by<br>ammonia cracking<br>using EVREC<br>ammonia as a heat<br>source) | Hydrogen for industry |

#### Table 2: scenarios involved within EVREC project



#### VIII.2.1 Global remarks not affecting the conformity

The following limitation regarding the GHG emissions calculation performed regarding EVREC project should be considered when interpreting the information presented in this pre-audit report:

Ammonia storage flare: The document relating to the process flow diagram of ammonia storage and export [15] provided, show the use of an ammonia storage flare. This flare device is used to safely burn off excess ammonia gas that might be released from storage tanks or during processing. This is a safety measure to prevent the buildup of flammable or toxic gases that could pose a risk to workers, the facility, and the surrounding environment.

It is important to note that atmospheric emissions of  $N_2O$  can occur if ammonia undergoes incomplete combustion in the flare system. However, EVREC did not consider these potential  $N_2O$  emissions when quantifying the GHG emissions associated with the project scenarios.

Given the absence of specific data on the combustion efficiency of the flaring system, Bureau Veritas recommends taking a conservative approach. The GHG emissions calculations should include the estimated quantities of  $N_2O$  that could be emitted due to incomplete combustion of  $NH_3$ . If the exclusion of these  $N_2O$  emissions is considered negligible, this must be justified in a scientifically appropriate manner.

 Negligibility of elastic inputs: certain material inputs used in the hydrogen treatment system (e.g. De-oxo catalysts) and ammonia production (e.g. iron catalyst) have not been included in the calculation of GHG emissions because considered negligible. Although it is considered trivial, the justification for their materiality level will have to be quantitatively supported for the operational certification.

Bureau Veritas recommends that the materiality of these GHG emissions sources shall be evaluated in order to justify their exclusion, but this does not compromise the compliance with GHG emissions savings requirements for pre-certification.

#### VIII.2.2 Scenario 1: Ammonia for Bunkering fuel

In the first scenario:

 It is assumed that the project boundary ends at the point of with the ammonia has been delivered at the port of Hamburg, considering ammonia loading/unloading and shipping.

Furthers assumptions can found in annex [16].

The results are given below:





Bureau Veritas has assessed the methodology used for this calculation and made the conclusion that the methodology is compliant with the GHG emissions criteria of RED II.

Bureau Veritas has checked the used emission factors for this analysis. RED II imposes the use of standard values given in RED II [1], DA1 [2] and DA2 [3] annexes, which have been correctly used by Hinicio in the report and made the conclusion that they were compliant with the GHG emissions criteria of RED II.

The detailed calculation and formula have been reviewed according to references [7] and [22]. No errors or double-counting errors have been identified by Bureau Veritas.

The obtained results of 4,5 gCO2e/MJ of fuel are below the RED II DA2 threshold. This result was obtained by considering a roundtrip to Europe.

# For scenario 1, the GHG requirements are considered complied.

#### VIII.2.3 Scenario 2: Ammonia for industry

For this scenario, the main assumptions are the following:

 It is assumed that the project boundary ends at the point of with the ammonia has been delivered at the port of Hamburg, considering ammonia loading/unloading, shipping and inland transport, ammonia cracking with NH3 and grid transport of the resulting hydrogen.

Furthers assumptions can found in annex [17].

The results are given below:





As for the scenario 1, Bureau Veritas has assessed the methodology used for this calculation and made the conclusion that the methodology is compliant with the GHG emissions criteria of RED II.

As for the scenario 1, Bureau Veritas has assessed the emission factors used for this calculation and made the conclusion that they were compliant with the GHG emissions criteria of RED II.

As for the scenario 1, Bureau Veritas has assessed the detailed calculation and has identified no errors.

The results for scenario 2, which are maximum 4,6 gCO2eq/MJ of fuel are below the RED II DA2 threshold. This result was obtained by considering a roundtrip to Europe.

#### For scenario 2, the GHG requirements are considered complied with.

#### VIII.2.4 Scenario 3: Hydrogen for industry

For this scenario, the main assumptions are the following:

• It is assumed that the project boundary ends at the point of with the ammonia has been delivered at the port of Hamburg, considering ammonia loading/unloading, shipping and inland transport.

Furthers assumptions can found in annex [18].

The results are given below:




As for the scenario 1, Bureau Veritas has assessed the methodology used for this calculation and made the conclusion that the methodology is compliant with the GHG emissions criteria of RED II.

As for the scenario 1, Bureau Veritas has assessed the emission factors used for this calculation and made the conclusion that they were compliant with the GHG emissions criteria of RED II.

As for the scenario 1, Bureau Veritas has assessed the detailed calculation and has identified no errors.

The results for scenario 3, which are maximum 10,2 gCO2eq/MJ of fuel are below the RED II DA2 threshold. This result was obtained by considering a roundtrip to Europe.

### For scenario 3, the GHG requirements are not considered complied with.

### VIII.3 Mass balance

The mass balance has been verified by Bureau Veritas, basing the analysis on the heat and mass balance document ([7]).

The produced hydrogen is made out of electrolysis through the following equation:

$$2 H_2 0 = 2 H_2 + 0_2$$

In columns 8, 13, and 14 of page 4 of the mass balance document, Bureau Veritas noted that the calculation were valid regarding hydrogen production.

The produced ammonia is made out of Haber-Bosch through the following equation:

$$3 H_2 + N_2 = 2 N H_3$$

In columns 34, 37, and 41 of page 5 of the mass balance document, Bureau Veritas noted that the calculation were valid regarding ammonia production.



Regarding blending of fuels with different sustainability properties, a part of the production can involve grid electricity which is not fully renewable. As a consequence, the related produced fuel will have different GHG emissions savings that the production part fully made with renewable electricity. As the grid electricity is not used for the electrolyser, the obtained fuel can still be certified. However, the GHG emissions savings will be different. CertifHy EU RFNBO scheme guidelines require to trace apart fuels with different GHG emissions savings. Hence, through smart metering, EVREC will have to detect when and how much electricity from grid is used, in order to determinate the relevant GHG emissions of the fuel and carry out of mass balance calculation to trace both categories of fuel.

The other solution is to always consider the worst-case scenario for GHG emission savings. With that conservative assumption, the grid electricity is always used, and if the resultant GHG emission savings are still beyond the threshold, EVREC will be allowed to consider one single produced fuel, and no blending will occur.

### The mass balance requirements are considered complied with.

### VIII.4 Traceability and chain of custody

This criterion is described in V.4.

As EVREC project goes from the electrolyser shipping part, no PoS is required from any supplier. Though EVREC will have to issue a PoS to its client.

• Still at early design stage, no PoS has been issued at the moment.

As transport or distribution actors do not need to be certified, only the downstream traders and processing units (e.g. for ammonia cracking) will have to be certified too and issue a PoS.

### The traceability requirements remain to be complied with.

### VIII.5 Management system

This criterion is described in V.5.

No management system document has been provided to assess this criterion. It is expected for a project at a very early stage not to have implemented any management system in accordance with CertifHy EU RFNBO requirements.

#### The management system requirements remain to be complied with.



### IX. <u>CONCLUSION</u>

The CertifHy EU RFNBO certification scheme pre-audit results are summarized in the table below

| Criterion             | Result                       | Condition or comment                                                                                                                                                                                                                          |  |  |  |  |
|-----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Renewable electricity | Compliant                    | Smart metering shall be used to ensure the consumed electricity is produced by the electricity plant and not taken from the grid.                                                                                                             |  |  |  |  |
| GHG emissions         | Compliant                    | The GHG emissions calculation will have to be<br>done once the quantities of chemicals and the<br>data about storage flare are known. The<br>objective is to support the fact that these<br>emissions are neglectable (See section VIII.2.1). |  |  |  |  |
| Mass balance          | Compliant                    | EVREC needs to address the use of grid<br>electricity, as different GHG emissions require<br>different batches traceability and mass balance<br>calculation.                                                                                  |  |  |  |  |
| Traceability          | Not assessed at design stage |                                                                                                                                                                                                                                               |  |  |  |  |
| Management system     | Not assessed at design stage |                                                                                                                                                                                                                                               |  |  |  |  |

In conclusion, Bureau Veritas has performed an analysis of the current design of the EVREC ammonia project in accordance with the certification scheme CertifHy EU RFNBO requirements based on RED II DA1 and DA2 regulations.

This analysis conclusion is entirely related to the current design and current EU regulations. Any major change in this design until the operation time would require a whole new analysis. As the project is still at an early stage, some documentation required for the actual audit have not been provided (such as traceability and management system documentation).

This documents audit review considers that this project is **compliant with the scheme requirements.** Bureau Veritas points out limits detailed above regarding the GHG emission calculation. More information regarding inputs are required to have the carbon intensity of the fuel completely compliant. The other criteria are considered complied with.

### APPENDIX C ACCDC REPORT



| GNAME                  | GCOMNAME                  | FAMILY       | Observer         | TotalNumber | Month | Day | Year | SRANK_2015 | SRANK_  | 2 NRANK    |
|------------------------|---------------------------|--------------|------------------|-------------|-------|-----|------|------------|---------|------------|
| Scolopax minor         | American Woodcock         | Scolopacida  | BBS observer: 10 |             | 7     | 5   | 2015 | S1B,SUM    | S1B     | N5B,N5M    |
| Dendroica castanea     | Bay-breasted Warbler      | Parulidae    | BBS observer: 10 |             | 7     | 2   | 2018 | S2B,SUM    | S3B     | N5B,N5M    |
| Dendroica castanea     | Bay-breasted Warbler      | Parulidae    | BBS observer: 10 |             | 7     | 3   | 2017 | S2B,SUM    | S3B     | N5B,N5M    |
| Ophiogomphus colubrinu | s Boreal Snake Tail/ Club | Gomphidae    | unknown          |             | 8     | 15  | 1997 | S3         | S3?     | N5         |
| Dendroica tigrina      | Cape May Warbler          | Parulidae    | BBS observer: 10 |             | 7     | 7   | 2014 | S2B,SUM    | S2B     | N5B,N5M    |
| Dendroica tigrina      | Cape May Warbler          | Parulidae    | BBS observer: 10 |             | 7     | 2   | 2018 | S2B,SUM    | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 6     | 17  | 2019 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 7   | 2012 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 7   | 2012 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 7   | 2014 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 6     | 17  | 2019 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 3   | 2016 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 7   | 2014 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 7   | 2014 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Spizella passerina     | Chipping Sparrow          | Passerellida | BBS observer: 10 |             | 7     | 7   | 2014 | S2S3B,SUM  | S2B     | N5B,N5M    |
| Leucorrhinia glacialis | Crimson-ringed Whitefa    | Libellulidae | Larson D.J.      |             | 6     | 19  | 1979 | S3S4       | S3      | N5         |
| Catharus minimus       | Gray-cheeked Thrush       | Turdidae     | BBS observer: 10 |             | 7     | 3   | 2017 | S2B,SUM    | S2S3B   | N5B,N5M    |
| Catharus minimus       | Gray-cheeked Thrush       | Turdidae     | BBS observer: 10 |             | 7     | 7   | 2013 | S2B,SUM    | S2S3B   | N5B,N5M    |
| Tringa melanoleuca     | Greater Yellowlegs        | Scolopacida  | BBS observer: 10 |             | 6     | 17  | 2019 | S3B, S4M   | S4B,S5M | 115B,N4N,N |
| Tringa melanoleuca     | Greater Yellowlegs        | Scolopacida  | BBS observer: 10 |             | 7     | 7   | 2011 | S3B, S4M   | S4B,S5M | 115B,N4N,N |
| Tringa melanoleuca     | Greater Yellowlegs        | Scolopacida  | BBS observer: 10 |             | 7     | 2   | 2018 | S3B, S4M   | S4B,S5M | 115B,N4N,N |
| Anas platyrhynchos     | Mallard                   | Anatidae     | BBS observer: 10 |             | 7     | 7   | 2013 | S3B,SUM    | S3B     | 15B,N5N,N  |
| Martes americana       | Newfoundland Marten       | Mustelidae   | Mac Andrews      | 1           | 12    | 10  | 1987 | S3         | S1      | N5         |
| Martes americana       | Newfoundland Marten       | Mustelidae   | Roland Wayne Pa  | 1           | 4     | 26  | 2014 | S3         | S1      | N5         |
| Accipiter gentilis     | Northern Goshawk          | Accipitridae | Todd Boland      | 1           | 12    | 28  | 1999 | S3         | S3B     | 14B,N4N5N  |
| Accipiter gentilis     | Northern Goshawk          | Accipitridae | Craig Purchase   | 1           | 12    | 28  | 1998 | S3         | S3B     | 14B,N4N5N  |
| Parula americana       | Northern Parula           | Parulidae    | BBS observer: 10 |             | 7     | 5   | 2015 | S1B?,SUM   | S1?B    | N5B,N5M    |
| Contopus cooperi       | Olive-sided Flycatcher    | Tyrannidae   | Alison Mews      |             | 6     | 11  | 2017 | S3B,SUM    | S3S4B   | N4B,N3M    |
| Contopus cooperi       | Olive-sided Flycatcher    | Tyrannidae   | BBS observer: 10 |             | 7     | 7   | 2014 | S3B,SUM    | S3S4B   | N4B,N3M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 7   | 2014 | S3B,SUM    | S5B     | N5B,N5M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 3   | 2017 | S3B,SUM    | S5B     | N5B,N5M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 2   | 2018 | S3B,SUM    | S5B     | N5B,N5M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 7   | 2013 | S3B,SUM    | S5B     | N5B,N5M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 7   | 2014 | S3B,SUM    | S5B     | N5B,N5M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 5   | 2015 | S3B,SUM    | S5B     | N5B,N5M    |
| Seiurus aurocapilla    | Ovenbird                  | Parulidae    | BBS observer: 10 |             | 7     | 5   | 2015 | S3B,SUM    | S5B     | N5B,N5M    |

| GNAME                 | GCOMNAME                | FAMILY        | Observer         | TotalNumber | Month | Day | Year | SRANK_2015 | SRANK_ | 2 NRANK   |
|-----------------------|-------------------------|---------------|------------------|-------------|-------|-----|------|------------|--------|-----------|
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 3   | 2016 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 2   | 2018 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 2   | 2018 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 2   | 2018 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 6     | 17  | 2019 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 7   | 2013 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 7   | 2014 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 3   | 2016 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 7   | 2011 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 7   | 2014 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 5   | 2015 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 3   | 2016 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 3   | 2016 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 3   | 2017 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 6     | 17  | 2019 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 3   | 2016 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 7     | 2   | 2018 | S3B,SUM    | S5B    | N5B,N5M   |
| Seiurus aurocapilla   | Ovenbird                | Parulidae     | BBS observer: 10 |             | 6     | 17  | 2019 | S3B,SUM    | S5B    | N5B,N5M   |
| Vireo philadelphicus  | Philadelphia Vireo      | Vireonidae    | BBS observer: 10 |             | 7     | 7   | 2013 | S3B,SUM    | S2B    | N5B,N5M   |
| Vireo philadelphicus  | Philadelphia Vireo      | Vireonidae    | BBS observer: 10 |             | 7     | 7   | 2012 | S3B,SUM    | S2B    | N5B,N5M   |
| Vireo philadelphicus  | Philadelphia Vireo      | Vireonidae    | BBS observer: 10 |             | 7     | 7   | 2012 | S3B,SUM    | S2B    | N5B,N5M   |
| Vireo philadelphicus  | Philadelphia Vireo      | Vireonidae    | BBS observer: 10 |             | 7     | 7   | 2012 | S3B,SUM    | S2B    | N5B,N5M   |
| Vireo philadelphicus  | Philadelphia Vireo      | Vireonidae    | BBS observer: 10 |             | 7     | 3   | 2016 | S3B,SUM    | S2B    | N5B,N5M   |
| Loxia curvirostra     | Red Crossbill           | Fringillidae  | Barry Linehan    |             | 10    |     | 2020 | S1S2       | S2S3   | 15B,N5N,N |
| Agelaius phoeniceus   | Red-winged Blackbird    | Icteridae     | BBS observer: 10 |             | 7     | 7   | 2013 | S1B,SUM    | S1S2B  | 15B,N5N,N |
| Calopteryx aequabilis | River Jewelwing/ Apical | l Calopterygi | Larson D.J.      |             | 6     | 26  | 1979 | S3         | S2S3   | N5        |
| Euphagus carolinus    | Rusty Blackbird         | Icteridae     | BBS observer: 10 |             | 7     | 7   | 2013 | S2S3B,SUM  | S3B    | I4B,NUN,N |
| Euphagus carolinus    | Rusty Blackbird         | Icteridae     | BBS observer: 10 |             | 7     | 3   | 2017 | S2S3B,SUM  | S3B    | I4B,NUN,N |
| Euphagus carolinus    | Rusty Blackbird         | Icteridae     | BBS observer: 10 |             | 7     | 3   | 2016 | S2S3B,SUM  | S3B    | I4B,NUN,N |
| Euphagus carolinus    | Rusty Blackbird         | Icteridae     | BBS observer: 10 |             | 7     | 3   | 2016 | S2S3B,SUM  | S3B    | I4B,NUN,N |
| Glaucopsyche lygdamus | Silvery Blue            | Lycaenidae    | Ross             |             |       |     |      | S3         |        | N5        |
| Catharus fuscescens   | Veery                   | Turdidae      | BBS observer: 10 |             | 7     | 7   | 2011 | S2B,SUM    | S3B    | N5B,N5M   |
| Catharus fuscescens   | Veery                   | Turdidae      | BBS observer: 10 |             | 7     | 7   | 2011 | S2B,SUM    | S3B    | N5B,N5M   |
| Catharus fuscescens   | Veery                   | Turdidae      | BBS observer: 10 |             | 7     | 5   | 2015 | S2B,SUM    | S3B    | N5B,N5M   |
| Catharus fuscescens   | Veery                   | Turdidae      | BBS observer: 10 |             | 7     | 5   | 2015 | S2B,SUM    | S3B    | N5B,N5M   |
| Troglodytes hiemalis  | Winter Wren             | Troglodytida  | BBS observer: 10 |             | 7     | 7   | 2011 | S3B,SUM    | S3S4B  | N5B       |

| GRANK | GeneralStat | COSEWIC_ST          | PROVINCIAL | SARA       | DESCR_HABIT SITE_NAME                        | Accuracy | SYNAME |
|-------|-------------|---------------------|------------|------------|----------------------------------------------|----------|--------|
| G5    | Sensitive   |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Jndetermine | (                   |            |            | ExploitsRiver                                | 1000     |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Jndetermine | (                   |            |            | Bishops Falls                                | 1000     |        |
| G5    | Secure      | Indidate (Mid Prior | Threatened |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      | Indidate (Mid Prior | Threatened |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | At Risk     | Threatened          | Threatened | Endangered | SE of Bishops Falls, approx 10 kn            | า 1000   |        |
| G5    | At Risk     | Threatened          | Threatened | Endangered | . Marten eventu Confederation Place, Botwood | 100      |        |
| G5    | Secure      |                     |            |            |                                              | 1000     |        |
| G5    | Secure      |                     |            |            | Jumper's Brook Road                          | 1000     |        |
| G5    | Jndetermine | (                   |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G4    | At risk     | Special Concern     | Threatened | Threatened |                                              | 1000     |        |
| G4    | At risk     | Special Concern     | Threatened | Threatened | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |
| G5    | Secure      |                     |            |            | Northern Arm BBS route (ID:19)               | 250      |        |

| GRANK | GeneralStati | COSEWIC_ST      | PROVINCIAL | SARA            | DESCR_HABIT SITE_NAME          | Accuracy | SYNAME |
|-------|--------------|-----------------|------------|-----------------|--------------------------------|----------|--------|
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | At Risk      | Threatened      | Threatened | Threatened      |                                | 1000     |        |
| G5    | Sensitive    |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Jndetermined |                 |            |                 | Bishops Falls                  | 1000     |        |
| G4    | Secure       | Special Concern | Vulnerable | Special Concern | Northern Arm BBS route (ID:19) | 250      |        |
| G4    | Secure       | Special Concern | Vulnerable | Special Concern | Northern Arm BBS route (ID:19) | 250      |        |
| G4    | Secure       | Special Concern | Vulnerable | Special Concern | Northern Arm BBS route (ID:19) | 250      |        |
| G4    | Secure       | Special Concern | Vulnerable | Special Concern | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Bishop's Falls                 | 1000     |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |
| G5    | Secure       |                 |            |                 | Northern Arm BBS route (ID:19) | 250      |        |

| CITATION IDNU                     | JM 5km GR        | ILY CENTROID OF | X CENTROID OF GRID CELL |
|-----------------------------------|------------------|-----------------|-------------------------|
| Pardieck, K.L., Ziolkowski J mstr | 1136111 Grid Cel | l 49.23312583   | -55.37560864            |
| Pardieck, K.L., Ziolkowski J mstr | 1136987 Grid Cel | l 49.23312583   | -55.37560864            |
| Pardieck, K.L., Ziolkowski J mstr | 1136771 Grid Cel | 49.32398958     | -55.44143202            |
| 2DDragonflydata.xls mstr          | 1034732 Grid Cel | 49.01016537     | -55.51963033            |
| Pardieck, K.L., Ziolkowski J mstr | 1135954 Grid Cel | l 49.23312583   | -55.37560864            |
| Pardieck, K.L., Ziolkowski J mstr | 1136966 Grid Cel | 49.36894828     | -55.44001091            |
| Pardieck, K.L., Ziolkowski J mstr | 1137190 Grid Cel | l 49.18816748   | -55.37708134            |
| Pardieck, K.L., Ziolkowski J mstr | 1135342 Grid Cel | l 49.32304138   | -55.37265221            |
| Pardieck, K.L., Ziolkowski J mstr | 1135343 Grid Cel | l 49.32304138   | -55.37265221            |
| Pardieck, K.L., Ziolkowski J mstr | 1135913 Grid Cel | l 49.32304138   | -55.37265221            |
| Pardieck, K.L., Ziolkowski J mstr | 1137191 Grid Cel | l 49.32304138   | -55.37265221            |
| Pardieck, K.L., Ziolkowski J mstr | 1136454 Grid Cel | 49.36985699     | -55.50885691            |
| Pardieck, K.L., Ziolkowski J mstr | 1135914 Grid Cel | 49.41390659     | -55.43858624            |
| Pardieck, K.L., Ziolkowski J mstr | 1135915 Grid Cel | 49.45886452     | -55.43715802            |
| Pardieck, K.L., Ziolkowski J mstr | 1135916 Grid Cel | 49.45886452     | -55.43715802            |
| 2DDragonflydata.xls mstr          | 1034726 Grid Cel | l 49.00926804   | -55.45128125            |
| Pardieck, K.L., Ziolkowski J mstr | 1136848 Grid Cel | l 49.18816748   | -55.37708134            |
| Pardieck, K.L., Ziolkowski J mstr | 1135780 Grid Cel | l 49.23312583   | -55.37560864            |
| Pardieck, K.L., Ziolkowski J mstr | 1137127 Grid Cel | 49.32398958     | -55.44143202            |
| Pardieck, K.L., Ziolkowski J mstr | 1134996 Grid Cel | l 49.32304138   | -55.37265221            |
| Pardieck, K.L., Ziolkowski J mstr | 1136893 Grid Cel | l 49.32304138   | -55.37265221            |
| Pardieck, K.L., Ziolkowski J mstr | 1135554 Grid Cel | l 49.32304138   | -55.37265221            |
| John Neville. Accidental Cr AC01  | 153 Grid Cel     | l 49.00833024   | -55.38293564            |
| Accidental Capture Marten ST02    | 246 Grid Cel     | l 49.14320875   | -55.37855038            |
| Nf.Birds, Data Entry by WD mstr   | 1029831 Grid Cel | 49.01016537     | -55.51963033            |
| Nf.Birds, Data Entry by WD mstr   | 1029841 Grid Cel | l 49.00833024   | -55.38293564            |
| Pardieck, K.L., Ziolkowski J mstr | 1136222 Grid Cel | l 49.18816748   | -55.37708134            |
| nf.birds, june 11, 2017 mstr      | 1055595 Grid Cel | 49.01016537     | -55.51963033            |
| Pardieck, K.L., Ziolkowski J mstr | 1135851 Grid Cel | l 49.18816748   | -55.37708134            |
| Pardieck, K.L., Ziolkowski J mstr | 1135994 Grid Cel | l 49.18816748   | -55.37708134            |
| Pardieck, K.L., Ziolkowski J mstr | 1136795 Grid Cel | l 49.18816748   | -55.37708134            |
| Pardieck, K.L., Ziolkowski J mstr | 1137013 Grid Cel | l 49.18816748   | -55.37708134            |
| Pardieck, K.L., Ziolkowski J mstr | 1135714 Grid Cel | l 49.2780838    | -55.37413227            |
| Pardieck, K.L., Ziolkowski J mstr | 1135995 Grid Cel | l 49.2780838    | -55.37413227            |
| Pardieck, K.L., Ziolkowski J mstr | 1136265 Grid Cel | l 49.2780838    | -55.37413227            |
| Pardieck, K.L., Ziolkowski J mstr | 1136266 Grid Cel | l 49.2780838    | -55.37413227            |

| CITATION IDNUM                           | 5km GRII Y | CENTROID OF X | CENTROID OF GRID CELL |
|------------------------------------------|------------|---------------|-----------------------|
| Pardieck, K.L., Ziolkowski J mstr1136544 | Grid Cell  | 49.2780838    | -55.37413227          |
| Pardieck, K.L., Ziolkowski Jmstr1137014  | Grid Cell  | 49.2780838    | -55.37413227          |
| Pardieck, K.L., Ziolkowski Jmstr1137015  | Grid Cell  | 49.2780838    | -55.37413227          |
| Pardieck, K.L., Ziolkowski Jmstr1137016  | Grid Cell  | 49.2780838    | -55.37413227          |
| Pardieck, K.L., Ziolkowski Jmstr1137282  | Grid Cell  | 49.2780838    | -55.37413227          |
| Pardieck, K.L., Ziolkowski Jmstr1135715  | Grid Cell  | 49.32398958   | -55.44143202          |
| Pardieck, K.L., Ziolkowski Jmstr1135997  | Grid Cell  | 49.32398958   | -55.44143202          |
| Pardieck, K.L., Ziolkowski Jmstr1136547  | Grid Cell  | 49.32398958   | -55.44143202          |
| Pardieck, K.L., Ziolkowski Jmstr1135119  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski Jmstr1135996  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski Jmstr1136267  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski Jmstr1136545  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski J mstr1136546 | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski Jmstr1136796  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski Jmstr1137283  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski J mstr1136548 | Grid Cell  | 49.36985699   | -55.50885691          |
| Pardieck, K.L., Ziolkowski Jmstr1137017  | Grid Cell  | 49.36894828   | -55.44001091          |
| Pardieck, K.L., Ziolkowski Jmstr1137284  | Grid Cell  | 49.36894828   | -55.44001091          |
| Pardieck, K.L., Ziolkowski Jmstr1135651  | Grid Cell  | 49.18816748   | -55.37708134          |
| Pardieck, K.L., Ziolkowski Jmstr1135366  | Grid Cell  | 49.32304138   | -55.37265221          |
| Pardieck, K.L., Ziolkowski Jmstr1135367  | Grid Cell  | 49.41481674   | -55.50749507          |
| Pardieck, K.L., Ziolkowski J mstr1135368 | Grid Cell  | 49.45886452   | -55.43715802          |
| Pardieck, K.L., Ziolkowski Jmstr1136483  | Grid Cell  | 49.45886452   | -55.43715802          |
| email communication, via Cmstr1061422    | Grid Cell  | 49.01016537   | -55.51963033          |
| Pardieck, K.L., Ziolkowski J mstr1135580 | Grid Cell  | 49.18816748   | -55.37708134          |
| 2DDragonflydata.xls mstr1034722          | Grid Cell  | 49.00926804   | -55.45128125          |
| Pardieck, K.L., Ziolkowski J mstr1135581 | Grid Cell  | 49.23312583   | -55.37560864          |
| Pardieck, K.L., Ziolkowski J mstr1136686 | Grid Cell  | 49.23312583   | -55.37560864          |
| Pardieck, K.L., Ziolkowski J mstr1136419 | Grid Cell  | 49.32398958   | -55.44143202          |
| Pardieck, K.L., Ziolkowski J mstr1136420 | Grid Cell  | 49.32398958   | -55.44143202          |
| Ross Newfoundland Data.x mstr1041138     | Grid Cell  | 49.01016537   | -55.51963033          |
| Pardieck, K.L., Ziolkowski J mstr1135189 | Grid Cell  | 49.18816748   | -55.37708134          |
| Pardieck, K.L., Ziolkowski J mstr1135190 | Grid Cell  | 49.23312583   | -55.37560864          |
| Pardieck, K.L., Ziolkowski J mstr1136323 | Grid Cell  | 49.23312583   | -55.37560864          |
| Pardieck, K.L., Ziolkowski J mstr1136324 | Grid Cell  | 49.23312583   | -55.37560864          |
| Pardieck, K.L., Ziolkowski J mstr1135156 | Grid Cell  | 49.2780838    | -55.37413227          |

| GNAME                                 | GCOMNAME               | OBSERVER                    | MONTH | DAY | YEAR Verification |
|---------------------------------------|------------------------|-----------------------------|-------|-----|-------------------|
| Pinus resinosa                        | Red Pine               | Bruce Roberts; digitized by |       |     | 0                 |
| Carex foenea                          | Dry-Spike Sedge        | Fernald; Wiegand; Darling   |       |     | 0                 |
| Persicaria amphibia                   | water smartweed        | Fernald; Wiegand; Darling   | 8     |     | 1911              |
| Astragalus alpinus var. brunetianus   | Alpine Milk-Vetch      | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Eleocharis quinqueflora               | Few-Flower Spikerush   | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Crataegus macrosperma                 | Big-Fruit Hawthorn     | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Astragalus eucosmus                   | Pretty Milk-Vetch      | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Cornus alternifolia                   | Alternate-Leaf Dogwood | Fernald, M.L., K.M. Wiega   | 7     |     | 1911 v            |
| Carex houghtoniana                    | A Sedge                | Fernald, M.L., K.M. Wiega   | 7     |     | 1911 v            |
| Ranunculus macounii                   | Macoun Buttercup       | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Crataegus chrysocarpa var. chrysocarp | ¿Fineberry Hawthorne   | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Carex pseudocyperus                   | Cyperus-Like Sedge     | Fernald, M.L., K.M. Wiega   | 7     |     | 1911 v            |
| Ranunculus pensylvanicus              | Bristly Crowfoot       | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Graphephorum melicoides               | Purple False Oats      | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Spartina pectinata                    | Fresh Water Cordgrass  | Fernald; Wiegand; Darling   | 7     | 28  | 1911              |
| Carex conoidea                        | Field Sedge            | Fernald, M.L., K.M. Wiega   | 7     | 28  | 1911 v            |
| Carex adusta                          | Crowded Sedge          | Fernald; Wiegand; Darling   | 7     |     | 1911              |
| Carex cryptolepis                     | Northeastern Sedge     | Fernald, M.L., K.M. Wiega   | 7     |     | 1911 v            |
| Carex houghtoniana                    | A Sedge                | Bouchard, A., S. Hay, L. B  | 7     | 21  | 1988 v            |
| Carex adusta                          | Crowded Sedge          | Bouchard, A., S. Hay, L. B  | 7     | 21  | 1988 v            |
| Spartina pectinata                    | Fresh Water Cordgrass  | Bouchard, A., S. Hay, L. B  | 7     | 21  | 1988 v            |
| Carex conoidea                        | Field Sedge            | Bouchard, A., S. Hay, L. B  | 7     | 21  | 1988 v            |
| Najas flexilis                        | Bushy Naiad            | Bouchard, A., S. Hay, L. B  | 7     | 23  | 1988 v            |
| Potamogeton spirillus                 | Spiral Pondweed        | Bouchard, A., S. Hay, L. B  | 7     | 23  | 1988 v            |
| Juncus militaris                      | Bayonet Rush           | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |
| Eleocharis acicularis                 | Least Spike-Rush       | Hanel, C. and Hancock, J.   | 8     | 27  | 2001 v            |
| Potamogeton alpinus                   | Northern Pondweed      | Hanel, C. and Hancock, J.   | 8     | 27  | 2001 v            |
| Sagittaria graminea                   | Grassleaf Arrowhead    | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |
| Astragalus eucosmus                   | Pretty Milk-Vetch      | Hanel, C. and Hancock, J.   | 8     | 27  | 2001 v            |
| Apocynum cannabinum                   | Clasping-Leaf Dogbane  | Hanel, C. and Hancock, J.   | 8     | 27  | 2001 v            |
| Prunella vulgaris                     | Self-Heal              | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |
| Dichanthelium boreale                 | Northern Witchgrass    | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |
| Apocynum androsaemifolium             | Spreading Dogbane      | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |
| Muhlenbergia glomerata                | Marsh Muhly            | Hanel, C. and Hancock, J.   | 8     | 27  | 2001 v            |
| Hedysarum americanum                  | Apline Sweet-Vetch     | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |
| Cicuta bulbifera                      | Bulb-Bearing Water-Hem | Hanel, C. and Hancock, J.   | 8     | 27  | 2001              |

| GNAME                                    | GCOMNAME                | OBSERVER                  | MONTH | DAY | YEAR Verification |
|------------------------------------------|-------------------------|---------------------------|-------|-----|-------------------|
| Dichanthelium boreale                    | Northern Witchgrass     | Hanel, C. and Hancock, J. | 8     | 27  | 2001              |
| Juncus militaris                         | Bayonet Rush            | Hanel, C. and Hancock, J. | 8     | 27  | 2001              |
| Dulichium arundinaceum                   | Three-Way Sedge         | Hanel, C. and Hancock, J. | 8     | 27  | 2001              |
| Eleocharis elliptica                     | Slender Spike-Rush      | Hanel, C. and Hancock, J. | 8     | 27  | 2001 v            |
| Apocynum cannabinum                      | Clasping-Leaf Dogbane   | Hanel, C. and Hancock, J. | 8     | 27  | 2001 v            |
| Crataegus chrysocarpa var. chrysocarp    | Fineberry Hawthorne     | Maunder, John E.          | 6     | 15  | 1987 v            |
| Amelanchier spicata                      | Running Serviceberry    | Maunder, John E.          | 6     | 15  | 1987 v            |
| Astragalus eucosmus                      | Pretty Milk-Vetch       | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Astragalus eucosmus                      | Pretty Milk-Vetch       | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Astragalus alpinus var. brunetianus      | Alpine Milk-Vetch       | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Diervilla lonicera                       | Northern Bush-honeysuck | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Astragalus eucosmus                      | Pretty Milk-Vetch       | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Astragalus eucosmus                      | Pretty Milk-Vetch       | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Astragalus alpinus var. brunetianus      | Alpine Milk-Vetch       | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Diervilla lonicera                       | Northern Bush-honeysuck | C. Hanel and P. Sokoloff  | 7     | 10  | 2008              |
| Pinus resinosa                           | Red Pine                | Roberts, B.               |       |     | 1985 v            |
| Alisma triviale                          | Northern Water-Plantain | Hanel, C. and Pardy, S.   | 7     | 25  | 2001 v            |
| Eleocharis acicularis                    | Least Spike-Rush        | Hanel, C. and Pardy, S.   | 7     | 25  | 2001 v            |
| Cicuta bulbifera                         | Bulb-Bearing Water-Hem  | Hanel, C. and Pardy, S.   | 7     | 25  | 2001 v            |
| Eleocharis elliptica                     | Slender Spike-Rush      | Hanel, C. and Pardy, S.   | 7     | 25  | 2001 v            |
| Prunella vulgaris                        | Self-Heal               | Hanel, C. and Pardy, S.   | 7     | 25  | 2001 v            |
| Scirpus cyperinus                        | Cottongrass Bulrush     | Hanel, C. and Pardy, S.   | 7     | 25  | 2001              |
| Prunella vulgaris                        | Self-Heal               | Hanel, C. and Pardy, S.   | 7     | 25  | 2001              |
| Equisetum pratense                       | Meadow Horsetail        | Hanel, C. and Pardy, S.   | 7     | 27  | 2001 v            |
| Matteuccia struthiopteris var. pensylvan | i Ostrich Fern          | Hanel, C. and Pardy, S.   | 7     | 27  | 2001              |
| Scirpus cyperinus                        | Cottongrass Bulrush     | Hanel, C. and Pardy, S.   | 7     | 27  | 2001 v            |
| Carex projecta                           | Necklace Sedge          | Hanel, C. and Pardy, S.   | 7     | 27  | 2001 v            |
| Carex pedunculata                        | Longstalk Sedge         | Damman, A.W.H.            | 7     | 30  | 1957 v            |
| Carex houghtoniana                       | A Sedge                 | Damman, A.W.H.            | 7     | 1   | 1957 v            |
| Eriophorum gracile                       | Slender Cotton-Grass    | Fernald, M.L., K.M. Wiega | 7     | 14  | 1911 v            |
| Chimaphila umbellata                     | Common Wintergreen      | van Nostrand, R.          | 8     |     | 1958 v            |
| Zannichellia palustris                   | Horned Pondweed         | Hanel, C. and Pardy, S.   | 7     | 27  | 2001 v            |
| Juncus gerardii                          | Black Grass             | Hanel, C. and Pardy, S.   | 7     | 27  | 2001 v            |
| Spartina pectinata                       | Fresh Water Cordgrass   | Hanel, C. and Pardy, S.   | 7     | 27  | 2001 v            |
| Triglochin gaspensis                     | GaspT Peninsula Arrow-G | Hanel, C. and Pardy, S.   | 7     | 27  | 2001              |
| Juncus gerardii                          | Black Grass             | Hanel, C. and Pardy, S.   | 7     | 27  | 2001              |

| GNAME                             | GCOMNAME                 | OBSERVER                | MONTH | DAY | YEAR V | /erification |
|-----------------------------------|--------------------------|-------------------------|-------|-----|--------|--------------|
| Buxbaumia minakatae               | Hump-Backed Elves        | G. Freake               |       |     | 0 v    | 1            |
| Dryopteris fragrans               | Fragrant Cliff Wood-Fern | Rouleau, E.             | 6     | 25  | 1958 v | 1            |
| Diervilla lonicera                | Northern Bush-honeysuck  | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |
| Apocynum androsaemifolium         | Spreading Dogbane        | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Brachyelytrum aristosum           | Northern Shorthusk       | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Brachyelytrum aristosum           | Northern Shorthusk       | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Pyrola elliptica                  | Shinleaf                 | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |
| Dryopteris cristata               | Crested Wood Fern        | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Packera aurea                     | Golden Groundsel         | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Dichanthelium boreale             | Northern Witchgrass      | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Brachyelytrum aristosum           | Northern Shorthusk       | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |
| Diervilla lonicera                | Northern Bush-honeysuck  | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |
| Carex deweyana var. deweyana      | Short-Scale Sedge        | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Botrychium matricariifolium       | Chamomile Grape-Fern     | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Gentianella amarella subsp. acuta | Northern Gentian         | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | 1            |
| Rhinanthus minor                  | Little Yellow-Rattle     | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |
| Festuca rubra                     | Red Fescue               | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |
| Woodsia ilvensis                  | Rusty Woodsia            | Hanel, C. and Pardy, S. | 7     | 26  | 2001 v | /            |
| Festuca rubra                     | Red Fescue               | Hanel, C. and Pardy, S. | 7     | 26  | 2001   |              |

| GNAME                                  | SRANK_2010 | SRANK_2015 | NRANK | GRANK | FAMILY          | PROV_END_A |
|----------------------------------------|------------|------------|-------|-------|-----------------|------------|
| Pinus resinosa                         | S2         | S2         | N5    | G5    | Pinaceae        | Threatened |
| Carex foenea                           | S2S3       | S3         | N5    | G5    | Cyperaceae      |            |
| Persicaria amphibia                    | S2         | S2         | N5    | G5    | Polygonaceae    |            |
| Astragalus alpinus var. brunetianus    | S1         | S2S3       | N3N4  | G5T3  | Fabaceae        |            |
| Eleocharis quinqueflora                | S3         | S3S4       | N5    | G5    | Cyperaceae      |            |
| Crataegus macrosperma                  | S1         | S1         | N5    | G5    | Rosaceae        |            |
| Astragalus eucosmus                    | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Cornus alternifolia                    | S3         | S3S4       | N5    | G5    | Cornaceae       |            |
| Carex houghtoniana                     | S1         | S1         | N5    | G5    | Cyperaceae      |            |
| Ranunculus macounii                    | S2         | S2S3       | N5    | G5    | Ranunculaceae   |            |
| Crataegus chrysocarpa var. chrysocarpa | S2         | S2         | N5    | G5T5  | Rosaceae        |            |
| Carex pseudocyperus                    | S2         | S2         | N5    | G5    | Cyperaceae      |            |
| Ranunculus pensylvanicus               | S2         | S2S3       | N5    | G5    | Ranunculaceae   |            |
| Graphephorum melicoides                | S2         | S2S3       | N4N5  | G4G5  | Poaceae         |            |
| Spartina pectinata                     | S3         | S3S4       | N5    | G5    | Poaceae         |            |
| Carex conoidea                         | S2         | S2         | N4N5  | G5    | Cyperaceae      |            |
| Carex adusta                           | S2S3       | S3         | N5    | G5    | Cyperaceae      |            |
| Carex cryptolepis                      | S1         | S1         | N4N5  | G4G5  | Cyperaceae      |            |
| Carex houghtoniana                     | S1         | S1         | N5    | G5    | Cyperaceae      |            |
| Carex adusta                           | S2S3       | S3         | N5    | G5    | Cyperaceae      |            |
| Spartina pectinata                     | S3         | S3S4       | N5    | G5    | Poaceae         |            |
| Carex conoidea                         | S2         | S2         | N4N5  | G5    | Cyperaceae      |            |
| Najas flexilis                         | S2         | S2         | N5    | G5    | Hydrocharitacea | (          |
| Potamogeton spirillus                  | S2         | S2         | N5    | G5    | Potamogetonace  | 3          |
| Juncus militaris                       | S3         | S3         | N5    | G5    | Juncaceae       |            |
| Eleocharis acicularis                  | S3S5       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Potamogeton alpinus                    | S3S4       | S3S4       | N5    | G5    | Potamogetonace  | 3          |
| Sagittaria graminea                    |            | S3S4       | N4N5  | G5    | Alismataceae    |            |
| Astragalus eucosmus                    | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Apocynum cannabinum                    | S2S3       | S3         | N5    | G5    | Apocynaceae     |            |
| Prunella vulgaris                      | S3S4       | S3S5       | N5    | G5    | Lamiaceae       |            |
| Dichanthelium boreale                  | S3S5       | S3S4       | N5    | G5    | Poaceae         |            |
| Apocynum androsaemifolium              | S2S3       | S3         | N5    | G5    | Apocynaceae     |            |
| Muhlenbergia glomerata                 | S3S5       | S3S4       | N5    | G5    | Poaceae         |            |
| Hedysarum americanum                   | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Cicuta bulbifera                       | S3         | S3         | N5    | G5    | Apiaceae        |            |

| GNAME                                    | SRANK_2010 | SRANK_2015 | NRANK | GRANK | FAMILY          | PROV_END_A |
|------------------------------------------|------------|------------|-------|-------|-----------------|------------|
| Dichanthelium boreale                    | S3S5       | S3S4       | N5    | G5    | Poaceae         |            |
| Juncus militaris                         | S3         | S3         | N5    | G5    | Juncaceae       |            |
| Dulichium arundinaceum                   | S3S5       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Eleocharis elliptica                     | S3S5       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Apocynum cannabinum                      | S2S3       | S3         | N5    | G5    | Apocynaceae     |            |
| Crataegus chrysocarpa var. chrysocarpa   | a S2       | S2         | N5    | G5T5  | Rosaceae        |            |
| Amelanchier spicata                      | SNR        | S3S4       | N5    | G5    | Rosaceae        |            |
| Astragalus eucosmus                      | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Astragalus eucosmus                      | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Astragalus alpinus var. brunetianus      | S1         | S2S3       | N3N4  | G5T3  | Fabaceae        |            |
| Diervilla lonicera                       | S3S4       | S3S4       | N5    | G5    | Caprifoliaceae  |            |
| Astragalus eucosmus                      | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Astragalus eucosmus                      | S3         | S3         | N5    | G5    | Fabaceae        |            |
| Astragalus alpinus var. brunetianus      | S1         | S2S3       | N3N4  | G5T3  | Fabaceae        |            |
| Diervilla lonicera                       | S3S4       | S3S4       | N5    | G5    | Caprifoliaceae  |            |
| Pinus resinosa                           | S2         | S2         | N5    | G5    | Pinaceae        | Threatened |
| Alisma triviale                          | S1         | S2         | N5    | G5    | Alismataceae    |            |
| Eleocharis acicularis                    | S3S5       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Cicuta bulbifera                         | S3         | S3         | N5    | G5    | Apiaceae        |            |
| Eleocharis elliptica                     | S3S5       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Prunella vulgaris                        | S3S4       | S3S5       | N5    | G5    | Lamiaceae       |            |
| Scirpus cyperinus                        | S2S3       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Prunella vulgaris                        | S3S4       | S3S5       | N5    | G5    | Lamiaceae       |            |
| Equisetum pratense                       | S3         | S3         | N5    | G5    | Equisetaceae    |            |
| Matteuccia struthiopteris var. pensylvan | i S3S4     | S3S4       | N5    | G5T5  | Dryopteridaceae |            |
| Scirpus cyperinus                        | S2S3       | S3S4       | N5    | G5    | Cyperaceae      |            |
| Carex projecta                           | S3         | S3         | N5    | G5    | Cyperaceae      |            |
| Carex pedunculata                        | S3         | S3         | N5    | G5    | Cyperaceae      |            |
| Carex houghtoniana                       | S1         | S1         | N5    | G5    | Cyperaceae      |            |
| Eriophorum gracile                       | S1S2       | S1S2       | N5    | G5    | Cyperaceae      |            |
| Chimaphila umbellata                     | S2         | S2         | N5    | G5    | Ericaceae       |            |
| Zannichellia palustris                   | S2         | S2S3       | N5    | G5    | Potamogetonace  | 1          |
| Juncus gerardii                          | S2S3       | S2S3       | N5    | G5    | Juncaceae       |            |
| Spartina pectinata                       | S3         | S3S4       | N5    | G5    | Poaceae         |            |
| Triglochin gaspensis                     | S2S3       | S3         | N4N5  | G4G5  | Juncaginaceae   |            |
| Juncus gerardii                          | S2S3       | S2S3       | N5    | G5    | Juncaceae       |            |

| GNAME                             | SRANK_2010 | SRANK_2015 | NRANK | GRANK | FAMILY          | PROV_END_A |
|-----------------------------------|------------|------------|-------|-------|-----------------|------------|
| Buxbaumia minakatae               | S1         | S2?        | N1N3  | G2G4  | Buxbaumiaceae   |            |
| Dryopteris fragrans               | S2         | S2S3       | N5    | G5    | Dryopteridaceae | 1          |
| Diervilla lonicera                | S3S4       | S3S4       | N5    | G5    | Caprifoliaceae  |            |
| Apocynum androsaemifolium         | S2S3       | S3         | N5    | G5    | Apocynaceae     |            |
| Brachyelytrum aristosum           |            | S3S4       | N5    | G5    | Poaceae         |            |
| Brachyelytrum aristosum           |            | S3S4       | N5    | G5    | Poaceae         |            |
| Pyrola elliptica                  | S2S3       | S2S3       | N5    | G5    | Ericaceae       |            |
| Dryopteris cristata               | S3S4       | S3S4       | N5    | G5    | Dryopteridaceae |            |
| Packera aurea                     | S4S5       | S3S4       | N5    | G5    | Asteraceae      |            |
| Dichanthelium boreale             | S3S5       | S3S4       | N5    | G5    | Poaceae         |            |
| Brachyelytrum aristosum           |            | S3S4       | N5    | G5    | Poaceae         |            |
| Diervilla lonicera                | S3S4       | S3S4       | N5    | G5    | Caprifoliaceae  |            |
| Carex deweyana var. deweyana      | S1S2       | S2         | N5    | G5T5  | Cyperaceae      |            |
| Botrychium matricariifolium       | S2         | S2S3       | N5    | G5    | Ophioglossacea  | ŧ          |
| Gentianella amarella subsp. acuta | S2S3       | S3         | N5    | G5T5  | Gentianaceae    |            |
| Rhinanthus minor                  | S3         | S3         | N5    | G5    | Scrophulariacea | ŧ          |
| Festuca rubra                     | S5         | S2S3       | N5    | G5    | Poaceae         |            |
| Woodsia ilvensis                  | S3         | S3S4       | N5    | G5    | Dryopteridaceae | 1          |
| Festuca rubra                     | S5         | S2S3       | N5    | G5    | Poaceae         |            |

| GNAME                                | COSEWIC | DESCR_HABIT/ACC    | URACY_MESYNAME      | SITE_NAME             | SURVEYSITE               |
|--------------------------------------|---------|--------------------|---------------------|-----------------------|--------------------------|
| Pinus resinosa                       |         |                    | 100                 | ER, Exploits Ri       | VE                       |
| Carex foenea                         |         | Ditch in bog       | 1000 Carex aenea;   | C.                    | Bishop Falls             |
| Persicaria amphibia                  |         | Shallow pool nea   | 1000 Polygonum ar   | npł                   | Bishop Falls             |
| Astragalus alpinus var. brunetianus  |         | Ledges, talus, ar  | 1000 Astragalus br  | uer Bishop Falls      | Bishop Falls, north ba   |
| Eleocharis quinqueflora              |         | Springy spots in   | 1000 Scirpus quinq  | uef Bishop Falls      | Bishop Falls; north ba   |
| Crataegus macrosperma                |         | Ledges, gravel, c  | 1000 Crataegus ac   | util Bishop Falls     | Bishop Falls, south ba   |
| Astragalus eucosmus                  |         | Ledges, talus, ar  | 1000 Astragalus eu  | co: Bishop Falls      | Bishop Falls, north ba   |
| Cornus alternifolia                  |         | Woods.             | 1000 Swida alternif | olia Bishop Falls     | Bishop Falls.            |
| Carex houghtoniana                   |         | Sandy terraces.    | 1000 Carex hought   | oni Bishop Falls      | Bishop Falls; north ba   |
| Ranunculus macounii                  |         | Springy spots in   | 1000 Ranunculus n   | nac Bishop Falls      | Bishop Falls; n. bank    |
| Crataegus chrysocarpa var. chrysocar | rpa     | Ledges, gravel, c  | 1000 Cratagus brur  | neti Bishop Falls     | Bishop Falls, south ba   |
| Carex pseudocyperus                  |         | Boggy thickets.    | 1000                | Bishop Falls          | Bishop Falls.            |
| Ranunculus pensylvanicus             |         | Alluvial bushy fla | 1000                | <b>Bishop Falls</b>   | Bishop Falls; n. bank    |
| Graphephorum melicoides              |         | Ledges, talus, ar  | 1000 Graphephoru    | n nBishop Falls       | Bishop Falls, north ba   |
| Spartina pectinata                   |         | Springy spots in   | 1000 Spartina mich  | aux                   | Bishop Falls, north ba   |
| Carex conoidea                       |         | Ledges, gravel, c  | 1000 Carex katahd   | ne Bishop Falls       | Bishop Falls; south ba   |
| Carex adusta                         |         | Sandy terraces, I  | 1000                |                       | Bishop Falls, north ba   |
| Carex cryptolepis                    |         | Bogs.              | 1000 Carex flava va | ar. 1Bishop Falls     | Bishop Falls.            |
| Carex houghtoniana                   |         | Sandy flood plair  | 100 Carex hought    | oni Bishop's Falls    | Bishop's Falls, south    |
| Carex adusta                         |         | Sandy flood plair  | 100                 | Bishop's Falls        | Bishop's Falls, south    |
| Spartina pectinata                   |         | boulder and grav   | 100 Spartina mich   | aux                   | Bishop's Falls, south    |
| Carex conoidea                       |         | Ledges and crev    | 100 Carex katahd    | ne Bishop's Falls     | Bishop's Falls, south    |
| Najas flexilis                       |         | Flood pond on al   | 100                 | Exploits River        | Exploits River, Bishor   |
| Potamogeton spirillus                |         | Flood pond on al   | 100 Potamogeton     | din Exploits River    | Exploits River, Bishor   |
| Juncus militaris                     |         | Backwater of rive  | 100                 | Bishop's Falls (      | T Exploits Valley, Bisho |
| Eleocharis acicularis                |         | Backwater of rive  | 100 Scirpus acicu   | ari: Bishop's Falls ( | T Exploits Valley, Bisho |
| Potamogeton alpinus                  |         | Backwater of rive  | 100 Potamogeton     | alp Bishop's Falls (  | T Exploits Valley, Bisho |
| Sagittaria graminea                  |         | Backwater of rive  | 100                 | Bishop's Falls (      | T Exploits Valley, Bisho |
| Astragalus eucosmus                  |         | Cobblely and bou   | 10 Astragalus eu    | co: Bishop's Falls (  | b Exploits Valley, Bisho |
| Apocynum cannabinum                  |         | Cobblely and bou   | 10 Apocynum ca      | nnaBishop's Falls (   | b Exploits Valley, Bisho |
| Prunella vulgaris                    |         | Bouldery river sh  | 10                  | Bishop's Falls (      | T Exploits Valley, Bisho |
| Dichanthelium boreale                |         | Bouldery riverbai  | 10 Panicum bore     | ale Bishop's Falls (  | b Exploits Valley, Bisho |
| Apocynum androsaemifolium            |         | Bouldery riverbai  | 10 Apocynum an      | nbiçBishop's Falls (  | b Exploits Valley, Bisho |
| Muhlenbergia glomerata               |         | Bouldery riverbai  | 10 Polypogon glo    | meBishop's Falls (    | b Exploits Valley, Bisho |
| Hedysarum americanum                 |         | Bouldery riverbai  | 10 Hedysarum a      | pin Bishop's Falls (  | b Exploits Valley, Bisho |
| Cicuta bulbifera                     |         | Bouldery river sh  | 10                  | Bishop's Falls (      | T Exploits Valley, Bisho |

| GNAME                                   | COSEWIC | DESCR_HABITAA      | CCURACY_ME | SYNAME SITE_NAME                      | SURVEYSITE               |
|-----------------------------------------|---------|--------------------|------------|---------------------------------------|--------------------------|
| Dichanthelium boreale                   |         | Bouldery river sh  | 10         | Panicum boreale Bishop's Falls (      | T Exploits Valley, Bisho |
| Juncus militaris                        |         | Bouldery river sh  | 10         | Bishop's Falls (                      | T Exploits Valley, Bisho |
| Dulichium arundinaceum                  |         | Bouldery river sh  | 10         | Cyperus arundin: Bishop's Falls (     | T Exploits Valley, Bisho |
| Eleocharis elliptica                    |         | Bouldery river sh  | 10         | Eleocharis capita Bishop's Falls (    | T Exploits Valley, Bisho |
| Apocynum cannabinum                     |         | Bouldery river sh  | 10         | Apocynum canne Bishop's Falls (       | T Exploits Valley, Bisho |
| Crataegus chrysocarpa var. chrysoca     | rpa     |                    | 50         | Cratagus bruneti                      | Bishops Falls, at bridę  |
| Amelanchier spicata                     |         |                    | 50         |                                       | Bishops Falls, at bridę  |
| Astragalus eucosmus                     |         | Open gravelly an   | 10         | Astragalus euco: Bishops Falls, E     | Central Newfoundlance    |
| Astragalus eucosmus                     |         | Open gravelly an   | 10         | Astragalus euco: Bishops Falls, E     | Central Newfoundlance    |
| Astragalus alpinus var. brunetianus     |         | Rocky river shore  | 10         | Astragalus bruer Bishops Falls, E     | Central Newfoundlance    |
| Diervilla lonicera                      |         | Open gravelly an   | 10         | Diervilla diervilla; Bishops Falls, E | Central Newfoundlance    |
| Astragalus eucosmus                     |         | Open gravelly an   | 10         | Astragalus euco: Bishops Falls, E     | Central Newfoundlance    |
| Astragalus eucosmus                     |         | Open gravelly an   | 10         | Astragalus euco: Bishops Falls, E     | Central Newfoundlance    |
| Astragalus alpinus var. brunetianus     |         | Rocky river shore  | 10         | Astragalus bruer Bishops Falls, E     | Central Newfoundlance    |
| Diervilla lonicera                      |         | Open gravelly an   | 10         | Diervilla diervilla; Bishops Falls, E | Central Newfoundlance    |
| Pinus resinosa                          |         |                    | 1000       | Exploits River                        | Exploits River, below    |
| Alisma triviale                         |         | Small backwater    | 100        | Alisma plantago-Peters River (ne      | e: Northeast Coast, Bay  |
| Eleocharis acicularis                   |         | Small backwater    | 100        | Scirpus aciculari: Peters River (ne   | e: Northeast Coast, Bay  |
| Cicuta bulbifera                        |         | Small backwater    | 100        | Peters River (ne                      | e: Northeast Coast, Bay  |
| Eleocharis elliptica                    |         | Small backwater    | 100        | Eleocharis capita Peters River (ne    | e: Northeast Coast, Bay  |
| Prunella vulgaris                       |         | Small backwater    | 100        | Peters River (ne                      | e: Northeast Coast, Bay  |
| Scirpus cyperinus                       |         | Small backwater    | 100        | Eriophorum cype Peters River (ne      | e: Northeast Coast, Bay  |
| Prunella vulgaris                       |         | Gravelly shore of  | 10         | Peters River (ne                      | e: Northeast Coast, Bay  |
| Equisetum pratense                      |         | Alluvial Alnus inc | 100        | Equisetum prate Peterview             | Northeast Coast, Botv    |
| Matteuccia struthiopteris var. pensylva | ani     | Alluvial Alnus inc | 100        | Struthiopteris perPeterview           | Northeast Coast, Botv    |
| Scirpus cyperinus                       |         | Slight depressior  | 10         | Eriophorum cype Peterview             | Northeast Coast, Botv    |
| Carex projecta                          |         | Slight depressior  | 10         | Peterview                             | Northeast Coast, Botv    |
| Carex pedunculata                       |         | Black spruce fore  | 1000       | Exploits River                        | Exploits River.          |
| Carex houghtoniana                      |         | On sandy, wet ba   | 100        | Carex houghtoni Rattling Brook        | Rattling Brook, a few    |
| Eriophorum gracile                      |         | Shallow pool in to | 1000       | Eriophorum grac Mary Ann Lake         | Mary Ann Lake, head      |
| Chimaphila umbellata                    |         | Dry mossy Black    | 1000       | Chimaphila umb(New Bay Lake           | New Bay Lake (near),     |
| Zannichellia palustris                  |         | Pool in intertidal | 10         | Zannichellia maje Peters River (m     | c Northeast Coast, Bot   |
| Juncus gerardii                         |         | Marsh at rivermo   | 10         | Juncus bulbosus Peters River (m       | c Northeast Coast, Botv  |
| Spartina pectinata                      |         | Marsh at rivermo   | 10         | Spartina michau: Peters River (m      | o Northeast Coast, Botv  |
| Triglochin gaspensis                    |         | Shallow pool in s  | 10         | Peters River (m                       | o Northeast Coast, Botv  |
| Juncus gerardii                         |         | Shallow pool in s  | 10         | Juncus bulbosus Peters River (m       | c Northeast Coast, Bot   |

| GNAME                             | COSEWIC                | DESCR_HABITA       | ACCURACY_ME | SYNAME              | SITE_NAME          | SURVEYSITE               |
|-----------------------------------|------------------------|--------------------|-------------|---------------------|--------------------|--------------------------|
| Buxbaumia minakatae               | Candidate (Group 1, Hi |                    | 10000       |                     |                    | South Twin Lake, 35k     |
| Dryopteris fragrans               |                        | Dry cliffs.        | 1000        | Polypodium frag     | gi Point Leamingt  | or Point Leamingon, Mill |
| Diervilla lonicera                |                        | Clearing around    | 100         | Diervilla diervilla | a; Point Leamingt  | or Northeast Coast, Poir |
| Apocynum androsaemifolium         |                        | Clearing around    | 100         | Apocynum amb        | iç Point Leamingt  | or Northeast Coast, Poir |
| Brachyelytrum aristosum           |                        | Small ledges on    | 10          |                     | Point Leamingt     | or Northeast Coast, Poir |
| Brachyelytrum aristosum           |                        | Edge of trail in A | 100         |                     | Point Leamingt     | or Northeast Coast, Poir |
| Pyrola elliptica                  |                        | Edge of trail in A | 100         | Pyrola compacta     | a Point Leamingt   | or Northeast Coast, Poir |
| Dryopteris cristata               |                        | Edge of trail in A | 100         | Polypodium cris     | t: Point Leamingt  | or Northeast Coast, Poir |
| Packera aurea                     |                        | Moist clearing in  | 100         | Senecio aureus      | ; Point Leamingt   | or Northeast Coast, Poir |
| Dichanthelium boreale             |                        | Open area on bo    | 100         | Panicum boreal      | e Point Leamingt   | or Northeast Coast, Poir |
| Brachyelytrum aristosum           |                        | Open area on bo    | 100         |                     | Point Leamingt     | or Northeast Coast, Poir |
| Diervilla lonicera                |                        | Open area on bo    | 100         | Diervilla diervilla | a; Point Leamingt  | or Northeast Coast, Poir |
| Carex deweyana var. deweyana      |                        | Landward rocky     | 100         |                     | Leading Tickles    | Northeast Coast, Lea     |
| Botrychium matricariifolium       |                        | Open slope on la   | 10          | Botrychium luna     | ar Leading Tickles | Northeast Coast, Lea     |
| Gentianella amarella subsp. acuta |                        | Open slope on la   | 10          | Gentiana acuta;     | Leading Tickles    | Northeast Coast, Lea     |
| Rhinanthus minor                  |                        | Open slope on la   | 10          |                     | Leading Tickles    | Northeast Coast, Lea     |
| Festuca rubra                     |                        | Rocky tip of sma   | 10          | Festuca rubra s     | u Leading Tickles  | Northeast Coast, Lea     |
| Woodsia ilvensis                  |                        | Dry crack in rock  | 10          | Acrostichum ilve    | e Leading Tickles  | Northeast Coast, Lea     |
| Festuca rubra                     |                        | Crest of headlan   | 10          | Festuca rubra s     | uLeading Tickles   | Northeast Coast, Lea     |

| GNAME                                 | ACRONYMS_O | COLLECTION   | SOURCES       | IDNUM         | EST_NF_ID 5KM GRID CELL   |
|---------------------------------------|------------|--------------|---------------|---------------|---------------------------|
| Pinus resinosa                        |            |              | Natural and I | man SP103541  | 560867 Grid Cell 19 - Bis |
| Carex foenea                          | GH         | 4821         |               | SP027115      | 881663 Grid Cell 19 - Bis |
| Persicaria amphibia                   | GH         | 5348         |               | SP026981      | 414337 Grid Cell 19 - Bis |
| Astragalus alpinus var. brunetianus   | GH         | 5794         | Bouchard, A   | . Da SP024177 | 515713 Grid Cell 19 - Bis |
| Eleocharis quinqueflora               | GH         | 4756         | Bouchard, A   | . Da SP025525 | 602077 Grid Cell 19 - Bis |
| Crataegus macrosperma                 | GH         | 5640         | Bouchard, A   | . Da SP024703 | 613627 Grid Cell 19 - Bis |
| Astragalus eucosmus                   | GH; CAN    | 5797         | Bouchard, A   | . Da SP024198 | 456721 Grid Cell 19 - Bis |
| Cornus alternifolia                   | GH         | 5973         | Bouchard, A   | . Da SP024081 | 513156 Grid Cell 19 - Bis |
| Carex houghtoniana                    | GH         | 5009         | Bouchard, A   | . Da SP025360 | 537502 Grid Cell 19 - Bis |
| Ranunculus macounii                   | GH         | 5439         | Bouchard, A   | . Da SP024634 | 483135 Grid Cell 19 - Bis |
| Crataegus chrysocarpa var. chrysocarp | e GH       | 6606         | Bouchard, A   | . Da SP024696 | 284901 Grid Cell 19 - Bis |
| Carex pseudocyperus                   | GH; CAN    | 5015         | Bouchard, A   | . Da SP025471 | 276562 Grid Cell 19 - Bis |
| Ranunculus pensylvanicus              | GH; CAN    | 5436         | Bouchard, A   | . De SP024658 | 494456 Grid Cell 19 - Bis |
| Graphephorum melicoides               | GH         | 4590         | Bouchard, A   | . Da SP026179 | 621925 Grid Cell 19 - Bis |
| Spartina pectinata                    | GH, K, CAN | 4603         |               | SP026975      | 569770 Grid Cell 19 - Bis |
| Carex conoidea                        | GH; CAN    | 4934         | Bouchard, A   | . Da SP025260 | 508283 Grid Cell 19 - Bis |
| Carex adusta                          | GH         | 4827         |               | SP026838      | 560759 Grid Cell 19 - Bis |
| Carex cryptolepis                     | GH; CAN    | 4981         | Bouchard, A   | . De SP025267 | 555204 Grid Cell 19 - Bis |
| Carex houghtoniana                    | MT; CAN    | 88129        | Bouchard, A   | . De SP025359 | 537502 Grid Cell 19 - Bis |
| Carex adusta                          | CAN, MT    | 88130        | Bouchard, A   | . De SP026669 | 560759 Grid Cell 19 - Bis |
| Spartina pectinata                    | CAN, MT    | 88133        |               | SP026670      | 569770 Grid Cell 19 - Bis |
| Carex conoidea                        | MT; CAN    | 88131        | Bouchard, A   | . De SP025259 | 508283 Grid Cell 19 - Bis |
| Najas flexilis                        | MT         | 88191        | Bouchard, A   | . De SP025690 | 505132 Grid Cell 19 - Bis |
| Potamogeton spirillus                 | MT; CAN    | 88189        | Bouchard, A   | . De SP026233 | 565179 Grid Cell 19 - Bis |
| Juncus militaris                      |            |              | Herbarium D   | ata SP020040  | 603241 Grid Cell 19 - Bis |
| Eleocharis acicularis                 | NFM, MT    | CH 010827-38 | Herbarium D   | ata SP020048  | 431311 Grid Cell 19 - Bis |
| Potamogeton alpinus                   | NFM, MT    | CH 010827-39 | Herbarium D   | ata SP020050  | 462419 Grid Cell 19 - Bis |
| Sagittaria graminea                   |            |              | Herbarium D   | ata SP020053  | 629817 Grid Cell 19 - Bis |
| Astragalus eucosmus                   | NFM        | CH 010827-51 | Herbarium D   | ata SP019958  | 456721 Grid Cell 19 - Bis |
| Apocynum cannabinum                   | NFM, MT    | CH 010827-52 | Herbarium D   | ata SP019959  | 560775 Grid Cell 19 - Bis |
| Prunella vulgaris                     |            |              | Herbarium D   | ata SP019968  | 544712 Grid Cell 19 - Bis |
| Dichanthelium boreale                 |            |              | Herbarium D   | ata SP020072  | 596871 Grid Cell 19 - Bis |
| Apocynum androsaemifolium             |            |              | Herbarium D   | ata SP020083  | 284625 Grid Cell 19 - Bis |
| Muhlenbergia glomerata                | NFM, MT    | CH 010827-47 | Herbarium D   | ata SP020085  | 396197 Grid Cell 19 - Bis |
| Hedysarum americanum                  |            |              | Herbarium D   | ata SP020086  | 478048 Grid Cell 19 - Bis |
| Cicuta bulbifera                      |            |              | Herbarium D   | ata SP019980  | 556706 Grid Cell 19 - Bis |

| GNAME                                    | ACRONYMS_O   | COLLECTION    | SOURCES         | IDNUM    | EST_NF_ID | 5KM GRID CELL      |
|------------------------------------------|--------------|---------------|-----------------|----------|-----------|--------------------|
| Dichanthelium boreale                    |              |               | Herbarium Data  | SP019985 | 596871    | Grid Cell 19 - Bis |
| Juncus militaris                         |              |               | Herbarium Data  | SP019991 | 603241    | Grid Cell 19 - Bis |
| Dulichium arundinaceum                   |              |               | Herbarium Data  | SP019995 | 432864    | Grid Cell 19 - Bis |
| Eleocharis elliptica                     | NFM, MT      | CH 010827-54  | Herbarium Data  | SP020006 | 426607    | Grid Cell 19 - Bis |
| Apocynum cannabinum                      | NFM, MT      | CH 010827-29  | Herbarium Data  | SP020031 | 560775    | Grid Cell 19 - Bis |
| Crataegus chrysocarpa var. chrysocarp    | ٤NFM         |               | Herbarium Data  | SP048164 | 284901    | Grid Cell 19 - Bis |
| Amelanchier spicata                      | NFM          |               | Herbarium Data  | SP049081 | 958238    | Grid Cell 19 - Bis |
| Astragalus eucosmus                      |              |               |                 | SP066662 | 456721    | Grid Cell 19 - Bis |
| Astragalus eucosmus                      |              |               |                 | SP066663 | 456721    | Grid Cell 19 - Bis |
| Astragalus alpinus var. brunetianus      |              |               |                 | SP062432 | 515713    | Grid Cell 19 - Bis |
| Diervilla lonicera                       |              |               |                 | SP062954 | 600376    | Grid Cell 19 - Bis |
| Astragalus eucosmus                      |              |               | Excel Doc From  | SP087978 | 456721    | Grid Cell 19 - Bis |
| Astragalus eucosmus                      |              |               | Excel Doc From  | SP087980 | 456721    | Grid Cell 19 - Bis |
| Astragalus alpinus var. brunetianus      |              |               | Excel Doc From  | SP087982 | 515713    | Grid Cell 19 - Bis |
| Diervilla lonicera                       |              |               | Excel Doc From  | SP087984 | 600376    | Grid Cell 19 - Bis |
| Pinus resinosa                           |              | obs           | Bouchard, A. Da | SP025160 | 560867    | Grid Cell 17 - N c |
| Alisma triviale                          | NFM, MT, SWG | (CH 010725-1  | Herbarium Data  | SP018935 | 573506    | Grid Cell 16 - SV  |
| Eleocharis acicularis                    | NFM, MT      | CH 010725-11  | Herbarium Data  | SP018946 | 431311    | Grid Cell 16 - SV  |
| Cicuta bulbifera                         | NFM, MT      | CH 010725-15  | Herbarium Data  | SP018951 | 556706    | Grid Cell 16 - SV  |
| Eleocharis elliptica                     | NFM, MT      | CH 010725-36  | Herbarium Data  | SP018977 | 426607    | Grid Cell 16 - SV  |
| Prunella vulgaris                        | NFM, MT      | CH 010725-37  | Herbarium Data  | SP018978 | 544712    | Grid Cell 16 - SV  |
| Scirpus cyperinus                        |              |               | Herbarium Data  | SP018979 | 525578    | Grid Cell 16 - SV  |
| Prunella vulgaris                        |              |               |                 | SP018992 | 544712    | Grid Cell 16 - SV  |
| Equisetum pratense                       | NFM, MT      | CH 010727-23  | Herbarium Data  | SP019144 | 397943    | Grid Cell 16 - SV  |
| Matteuccia struthiopteris var. pensylvan | i            |               | Herbarium Data  | SP019163 | 997712    | Grid Cell 16 - SV  |
| Scirpus cyperinus                        | NFM, MT      | CH 010727-21  | Herbarium Data  | SP019174 | 525578    | Grid Cell 16 - SV  |
| Carex projecta                           | NFM, MT, SWG | (CH 010727-22 | Herbarium Data  | SP019175 | 553368    | Grid Cell 16 - SV  |
| Carex pedunculata                        | FFB          | 143           | Bouchard, A. Da | SP025454 | 605204    | Grid Cell 15 - Pe  |
| Carex houghtoniana                       | MT; FFB      | s.n.          | Bouchard, A. Da | SP025362 | 537502    | Grid Cell 15 - Pe  |
| Eriophorum gracile                       | GH; CAN      | 4726          | Bouchard, A. Da | SP025566 | 487385    | Grid Cell 1 - Nort |
| Chimaphila umbellata                     | MT; FFB      | 392           | Bouchard, A. Da | SP024561 | 557089    | Grid Cell 2 - New  |
| Zannichellia palustris                   | NFM, MT      | CH 010727-2   | Herbarium Data  | SP019131 | 483344    | Grid Cell 14 - Bo  |
| Juncus gerardii                          | NFM, MT      | CH 010727-4   | Herbarium Data  | SP019134 | 458105    | Grid Cell 14 - Bo  |
| Spartina pectinata                       | NFM, MT      | CH 010727-6   | Herbarium Data  | SP019136 | 569770    | Grid Cell 14 - Bo  |
| Triglochin gaspensis                     | NFM          | CH 010727-9   |                 | SP019139 | 452377    | Grid Cell 14 - Bo  |
| Juncus gerardii                          |              |               |                 | SP019143 | 458105    | Grid Cell 14 - Bo  |

| GNAME                             | ACRONYMS_O | COLLECTION   | SOURCES        | IDNUM     | EST_NF_ID | 5KM GRID CELL      |
|-----------------------------------|------------|--------------|----------------|-----------|-----------|--------------------|
| Buxbaumia minakatae               |            |              | Email Communi  | cSP070692 | 255674    | Grid Cell 0 - Nort |
| Dryopteris fragrans               | MT         | 4457         |                | SP026525  | 515791    | Grid Cell 11 - S c |
| Diervilla lonicera                |            |              | Herbarium Data | SP019115  | 600376    | Grid Cell 10 - Po  |
| Apocynum androsaemifolium         | NFM, MT    | CH 010726-44 | Herbarium Data | SP019114  | 284625    | Grid Cell 10 - Po  |
| Brachyelytrum aristosum           | NFM        | CH 010726-34 | Herbarium Data | SP019088  | 301366    | Grid Cell 10 - Po  |
| Brachyelytrum aristosum           | NFM, MT    | CH 010726-35 | Herbarium Data | SP019093  | 301366    | Grid Cell 10 - Po  |
| Pyrola elliptica                  | NFM        | CH 010726-36 | Herbarium Data | SP019094  | 450979    | Grid Cell 10 - Po  |
| Dryopteris cristata               | NFM, MT    | CH 010726-45 | Herbarium Data | SP019095  | 561153    | Grid Cell 10 - Po  |
| Packera aurea                     | NFM, MT    | CH 010726-37 | Herbarium Data | SP019102  | 381433    | Grid Cell 10 - Po  |
| Dichanthelium boreale             | NFM, MT    | CH 010726-41 | Herbarium Data | SP019106  | 596871    | Grid Cell 10 - Po  |
| Brachyelytrum aristosum           |            |              | Herbarium Data | SP019111  | 301366    | Grid Cell 10 - Po  |
| Diervilla lonicera                |            |              | Herbarium Data | SP019112  | 600376    | Grid Cell 10 - Po  |
| Carex deweyana var. deweyana      | NFM        | CH 010726-11 | Herbarium Data | SP019025  | 433703    | Grid Cell 3 - Lea  |
| Botrychium matricariifolium       | NFM, MT    | CH 010726-1  | Herbarium Data | SP019030  | 578530    | Grid Cell 3 - Lea  |
| Gentianella amarella subsp. acuta | NFM, MT    | CH 010726-2  | Herbarium Data | SP019031  | 494298    | Grid Cell 3 - Lea  |
| Rhinanthus minor                  | NFM        | CH 010726-3  | Herbarium Data | SP019032  | 483438    | Grid Cell 3 - Lea  |
| Festuca rubra                     |            |              | Herbarium Data | SP019065  | 454428    | Grid Cell 3 - Lea  |
| Woodsia ilvensis                  | NFM        | CH 010726-31 | Herbarium Data | SP019083  | 554013    | Grid Cell 3 - Lea  |
| Festuca rubra                     |            |              | Herbarium Data | SP019024  | 454428    | Grid Cell 3 - Lea  |

| GNAME                                  | Y GRID CELL CI X GRID | CELL CENTROID |
|----------------------------------------|-----------------------|---------------|
| Pinus resinosa                         | 49.00926804 -55.45    | 128125        |
| Carex foenea                           | 49.00926804 -55.45    | 128125        |
| Persicaria amphibia                    | 49.00926804 -55.45    | 128125        |
| Astragalus alpinus var. brunetianus    | 49.00926804 -55.45    | 128125        |
| Eleocharis quinqueflora                | 49.00926804 -55.45    | 128125        |
| Crataegus macrosperma                  | 49.00926804 -55.45    | 128125        |
| Astragalus eucosmus                    | 49.00926804 -55.45    | 128125        |
| Cornus alternifolia                    | 49.00926804 -55.45    | 128125        |
| Carex houghtoniana                     | 49.00926804 -55.45    | 128125        |
| Ranunculus macounii                    | 49.00926804 -55.45    | 128125        |
| Crataegus chrysocarpa var. chrysocarpa | 49.00926804 -55.45    | 128125        |
| Carex pseudocyperus                    | 49.00926804 -55.45    | 128125        |
| Ranunculus pensylvanicus               | 49.00926804 -55.45    | 128125        |
| Graphephorum melicoides                | 49.00926804 -55.45    | 128125        |
| Spartina pectinata                     | 49.00926804 -55.45    | 128125        |
| Carex conoidea                         | 49.00926804 -55.45    | 128125        |
| Carex adusta                           | 49.00926804 -55.45    | 128125        |
| Carex cryptolepis                      | 49.00926804 -55.45    | 128125        |
| Carex houghtoniana                     | 49.00926804 -55.45    | 128125        |
| Carex adusta                           | 49.00926804 -55.45    | 128125        |
| Spartina pectinata                     | 49.00926804 -55.45    | 128125        |
| Carex conoidea                         | 49.00926804 -55.45    | 128125        |
| Najas flexilis                         | 49.00926804 -55.45    | 128125        |
| Potamogeton spirillus                  | 49.00926804 -55.45    | 128125        |
| Juncus militaris                       | 49.00926804 -55.45    | 128125        |
| Eleocharis acicularis                  | 49.00926804 -55.45    | 128125        |
| Potamogeton alpinus                    | 49.00926804 -55.45    | 128125        |
| Sagittaria graminea                    | 49.00926804 -55.45    | 128125        |
| Astragalus eucosmus                    | 49.00926804 -55.45    | 128125        |
| Apocynum cannabinum                    | 49.00926804 -55.45    | 128125        |
| Prunella vulgaris                      | 49.00926804 -55.45    | 128125        |
| Dichanthelium boreale                  | 49.00926804 -55.45    | 128125        |
| Apocynum androsaemifolium              | 49.00926804 -55.45    | 128125        |
| Muhlenbergia glomerata                 | 49.00926804 -55.45    | 128125        |
| Hedysarum americanum                   | 49.00926804 -55.45    | 128125        |
| Cicuta bulbifera                       | 49.00926804 -55.45    | 128125        |

| GNAME                                     | Y GRID CELL CI X | GRID CELL CENTROID |
|-------------------------------------------|------------------|--------------------|
| Dichanthelium boreale                     | 49.00926804      | -55.45128125       |
| Juncus militaris                          | 49.00926804      | -55.45128125       |
| Dulichium arundinaceum                    | 49.00926804      | -55.45128125       |
| Eleocharis elliptica                      | 49.00926804      | -55.45128125       |
| Apocynum cannabinum                       | 49.00926804      | -55.45128125       |
| Crataegus chrysocarpa var. chrysocarpa    | 49.00926804      | -55.45128125       |
| Amelanchier spicata                       | 49.00926804      | -55.45128125       |
| Astragalus eucosmus                       | 49.00926804      | -55.45128125       |
| Astragalus eucosmus                       | 49.00926804      | -55.45128125       |
| Astragalus alpinus var. brunetianus       | 49.00926804      | -55.45128125       |
| Diervilla lonicera                        | 49.00926804      | -55.45128125       |
| Astragalus eucosmus                       | 49.00926804      | -55.45128125       |
| Astragalus eucosmus                       | 49.00926804      | -55.45128125       |
| Astragalus alpinus var. brunetianus       | 49.00926804      | -55.45128125       |
| Diervilla lonicera                        | 49.00926804      | -55.45128125       |
| Pinus resinosa                            | 49.05329012      | -55.38147752       |
| Alisma triviale                           | 49.09824963      | -55.38001577       |
| Eleocharis acicularis                     | 49.09824963      | -55.38001577       |
| Cicuta bulbifera                          | 49.09824963      | -55.38001577       |
| Eleocharis elliptica                      | 49.09824963      | -55.38001577       |
| Prunella vulgaris                         | 49.09824963      | -55.38001577       |
| Scirpus cyperinus                         | 49.09824963      | -55.38001577       |
| Prunella vulgaris                         | 49.09824963      | -55.38001577       |
| Equisetum pratense                        | 49.09824963      | -55.38001577       |
| Matteuccia struthiopteris var. pensylvani | 49.09824963      | -55.38001577       |
| Scirpus cyperinus                         | 49.09824963      | -55.38001577       |
| Carex projecta                            | 49.09824963      | -55.38001577       |
| Carex pedunculata                         | 49.09726827      | -55.31155051       |
| Carex houghtoniana                        | 49.09726827      | -55.31155051       |
| Eriophorum gracile                        | 49.14895038      | -55.85833381       |
| Chimaphila umbellata                      | 49.14591349      | -55.58415303       |
| Zannichellia palustris                    | 49.14320875      | -55.37855038       |
| Juncus gerardii                           | 49.14320875      | -55.37855038       |
| Spartina pectinata                        | 49.14320875      | -55.37855038       |
| Triglochin gaspensis                      | 49.14320875      | -55.37855038       |
| Juncus gerardii                           | 49.14320875      | -55.37855038       |

| GNAME                             | Y GRID CELL CI X | GRID CELL CENTROID |
|-----------------------------------|------------------|--------------------|
| Buxbaumia minakatae               | 49.23888559      | -55.85626197       |
| Dryopteris fragrans               | 49.2780838       | -55.37413227       |
| Diervilla lonicera                | 49.32304138      | -55.37265221       |
| Apocynum androsaemifolium         | 49.32304138      | -55.37265221       |
| Brachyelytrum aristosum           | 49.32304138      | -55.37265221       |
| Brachyelytrum aristosum           | 49.32304138      | -55.37265221       |
| Pyrola elliptica                  | 49.32304138      | -55.37265221       |
| Dryopteris cristata               | 49.32304138      | -55.37265221       |
| Packera aurea                     | 49.32304138      | -55.37265221       |
| Dichanthelium boreale             | 49.32304138      | -55.37265221       |
| Brachyelytrum aristosum           | 49.32304138      | -55.37265221       |
| Diervilla lonicera                | 49.32304138      | -55.37265221       |
| Carex deweyana var. deweyana      | 49.50382207      | -55.43572621       |
| Botrychium matricariifolium       | 49.50382207      | -55.43572621       |
| Gentianella amarella subsp. acuta | 49.50382207      | -55.43572621       |
| Rhinanthus minor                  | 49.50382207      | -55.43572621       |
| Festuca rubra                     | 49.50382207      | -55.43572621       |
| Woodsia ilvensis                  | 49.50382207      | -55.43572621       |
| Festuca rubra                     | 49.50382207      | -55.43572621       |

APPENDIX D ARCHAEOLOGY REPORT



## Desktop Survey of Cultural Resources

### in the

# Botwood, Twin Lakes and Leading Tickles Area Newfoundland and Labrador

By: Stephen Mills Heritage Consultant Prepared for: Strum Consulting June, 2023

### **Executive Summary**

In June, 2023 Strum Consulting hired the author to assist with an environmental assessment for a project proposed for central Newfoundland, between Botwood, Leading Tickles, North Twin Lake and South Twin Lake (Figure 1). The focus of this report is to determine the potential of heritage and paleontological resources in the areas proposed for the project. A review of the database in the Provincial Archaeology Office (PAO) and a literature view of publications, reports and library sources (historic maps etc.) indicate the region near the towns of Botwood and Leading Tickle, North Twin Lake and South Twin Lake, including the watershed west of the Exploits River, was inhabited by various Indigenous populations for close to five millennia. In the early eighteenth century, Europeans began moving into the Exploits River Basin and adjoining bays to harvest cod, salmon and fur-bearing animals. Archaeological and ethnographic sites associated with Europeans are also found in the area.

The PAO Archaeological Sites Database list over 200 archaeological sites in the Exploits Bay region. More than one cultural group utilized some of these sites over time. Archaeological sites can be classed as having a single component, meaning just one group lived there, or when there is evidence for more than one group on site (over time), they are referred to as "multicomponent sites". Together, these 200+ sites include Indigenous components from: the Maritime Archaic, (23 sites, 3,000-5000 years old), Pre-Inuit (38 sites, 1000-2800 years old), Recent First Nations (Beothuk ancestors and possibly other groups) (95 sites, 500-1600 years old), Beothuk (57 sites, 500-200 years old) and Mi'kmaq (6 sites, 300 years old to modern times). Included in the database are over 80 sites associated with European activities from the eighteenth century to twentieth-century lumber camps and WW II-era plane wrecks.

Historical documents, including testimonies from Beothuk themselves, indicate that these people traversed the interior waterways in this region. Historic maps from the early nineteenth century show the locations of some of the pathways and other Beothuk features, including wigwams (Indigenous houses), storehouses, caribou fences and camping sites, in the area.

There are no paleontological resources recorded in this area.<sup>1</sup>

It is recommended that the three parcels of land identified for this project be subjected to an archaeological survey to search for potential sites, particularly any associated with the Beothuk people, whose last known homeland was along the watershed of the Exploits River.

<sup>&</sup>lt;sup>1</sup> The Historic Resources Act lists all the known paleontological resources in the province. None are listed for the Botwood area. See: <u>https://www.assembly.nl.ca/legislation/sr/statutes/h04.htm#2</u>

### Introduction

Strum Consulting contracted the author to assist with an environmental assessment for a project proposed for central Newfoundland, between the towns of Botwood and Leading Tickles, including an area between North Twin Lake and South Twin Lake (Figure 1). The focus of this report is twofold: 1) identify archaeological and ethnographic sites and paleontological resources in the areas proposed for development; 2) determine the potential of additional heritage and paleontological resources in the areas proposed for development. Heritage resources include archaeological and/or historic sites including human burials. The province of Newfoundland and Labrador define paleontological resources as "... a construct, structure or work of nature consisting of or being evidence of prehistoric multicellular organisms ..." (NL Provincial Historic Resources Act <a href="https://www.assembly.nl.ca/legislation/sr/statutes/h04.htm#2">https://www.assembly.nl.ca/legislation/sr/statutes/h04.htm#2</a>. All of the recorded heritage or paleontological sites within or near the project areas will be identified within this report.

The proposed zones for development are divided into three irregular-shaped parcels, totaling just over 562 square kilometres. These zones have been designated as Parcels A, B & C. Parcel A is nearly 110 square kilometres in size and is located between South Twin Lake and North Twin Lake. It extends from the south end of South Twin Lake continuing some 20 kilometres northwards to a point about 4 kilometres south of Wild Bight (Badger Bay). Parcel B, at about 410 square kilometres in size, is the largest of the three parcels. It covers the area along the southwest side of the Bay of Exploits, near to, but excluding, the town of Botwood, and extending about 15 kilometres in land. The north-to-south length of Parcel B is approximately 30 kilometres. Parcel C, at about 49 square kilometres in size, is the third and smallest parcel of land. It covers much of the peninsula between Osmonton Arm and the north end of Seal Arm. As with the east side of Parcel B, Parcel C runs along most of the coastline of that peninsula. Each parcel is depicted separately showing the locations of nearby archaeological sites (Figures 7-10). All of the archaeological sites recorded in the area are listed in Table 1.

### **Historical Significance**

The Beothuk people, the Indigenous inhabitants of Newfoundland and Labrador at the time of contact with Europeans, and earlier Indigenous populations (Maritime Archaic, Pre-Inuit, Ancestral Beothuk) utilized the coast, islands and "near interior"<sup>2</sup> in north central Newfoundland for nearly 5000 years. These Indigenous populations, in particular the Beothuk and their ancestors, traditionally followed a cyclical transhumance economy, spending springs and summers on the coast and in the fall moving along rivers and lesser waterways, to the near interior where they could harvest terrestrial resources, mainly caribou, to sustain themselves during the winter (Holly 2013: 140-146). This part of Norte Dame Bay, and specifically the area around the Exploits River Basin, was, at various times home to all the Indigenous populations in Newfoundland. Western European fishers began taking cod and other marine species (whales,

<sup>&</sup>lt;sup>2</sup> The "near interior" is defined as being within 30 km of the coast (Schwarz 1994b: 63) or about a one-two day's walk from the coast.

salmon etc.) in Newfoundland in the early sixteenth century. Within a century of discovering these rich resources, fishing ships were in the waters off the north-central part of the island.

This was the last area of Newfoundland known to have been inhabited by the Beothuk (Pastore 1989:67). South Twin Lake was included in this area and it is known that the Beothuk used this area even after they abandoned the Exploits River as an access route from the coast to the interior (Marshall 1996: 138). Beginning in the 1730s, English settlers began to push farther into Norte Dame Bay, into the traditional homeland of the Beothuk (Marshall 1996: 65). Such incursions had a profound impact on the Beothuk, particularly as Europeans began to establish salmon-catching stations on the rivers and fur trappers ventured further up the waterways to lakes/ponds in the near-interior. These activities sometimes brought Europeans face-to-face with Beothuk, often to the detriment of the latter. Conflicts, including the taking of captives and killings by both sides, were deemed untenable to the colonial government, eventually resulting in Governor Hugh Palliser offering incentives to settlers to interact peacefully with the Beothuk (Marshall 1996: 85-92). Considering the numerous reports of violence upon the Beothuk by some Europeans, it is no surprize they chose locations deep in the interior for their fall/winter camps in an effort to protect themselves from Europeans.

Hand-drawn maps, from the late eighteenth century and a collection of sketches by Shanawdithit, the last know Beothuk, indicate the locations of a number of Beothuk campsites and their travel routes in this region. These maps and sketches were of the areas along the Exploits River including the region between Badger Bay and South Twin Lake.



*Figure 1 Plan of the project area showing the three parcels of land proposed for development.* 

### **Documentary References**

Fortunately, there are a small number of maps depicting parts of the area proposed for this project. These maps, by British Naval officers, and several sketches made by Shanawdithit, believed to be the last of her people, provide clues to potential Beothuk sites, trails and other features in the area. Documentary references to the region increase in the 1760s as government officials began to show concern for the Beothuk, the Indigenous population of the island of Newfoundland.

### Lieutenant John Cartwright

The first to undertake such a reconnaissance mission was Lieutenant John Cartwright (Royal Navy) who was commissioned by Governor Palliser to assemble an expedition in 1768 to traverse the Exploits River to Beothuk Lake (formerly Red Indian Lake) and locate any Beothuk (Cartwright, F.D.1826). Cartwright's mission failed to make contact with any Beothuk on the river but he did record considerable evidence of Beothuk activity in the region, including numerous campsites and caribou fences used to channel herds of caribou to places along rivers when they could be dispatched (Marshall 1996: 85).

Cartwright's guide on the expedition was John Cousens, a local trapper, who owned a salmon station on the Exploits River. Cousins told Cartwright that he usually went trapping in the fall and on one occasion, he had planned to trap beaver on Middleton Lake and Mary Anne Lakes, south of South Twin Lake, but when he arrived there he found a Beothuk camp there so he abandoned his plan and returned to the Exploits River (Marshall 1996: 76). Cartwright drew a map showing some of the Exploits River system from the coast to Beothuk Lake (Figure 2)



*Figure 2* A sketch of the River Exploits and the east end of Lieutenant's Lake in Newfoundland. John Cartwright, 1768. (Library and Archives Canada, reference # H3/110/Exploits River/[ca.1773], G3437.E82 1768. (C37 H3, Box number: 2000206202. Note, the blue star indicates the location of the town of Botwood.

### Captain David Buchan

The next attempt to reach the Beothuk was by Captain David Buchan and his men in 1811 (Marshall 1996: 137-153). Like Cartwright before him, Buchan failed to make contact with any Beothuk although, like Cartwright before him, also recorded seeing numerous campsites and associated features. Buchan prepared several maps showing where he had been and identifies several of the Beothuk camps and other features, including hearths and storehouses. (Figures 3-5). Importantly, he places South Twin Lake (known at the time as Badger Bay Pond) on his maps.



Figure 3 Sketch of the River Exploits as Explored in January and March 1811. By David Buchan. Courtesy of the Centre for Newfoundland Studies, catalogue # Nfld. Map G 3435 1811 BB. Note: Badger Bay Pond is South Twin Lake. The coloured markings indicate Beothuk features as observed in 1811.



*Figure 4* Captain Buchan's Track into the Interior of Newfoundland January 1820 to Open Communication with the Native Indians Sht. 1. Courtesy of the Centre for Newfoundland Studies, Memorial University, Catalogue # Nfld. Map G 3435 1820 C3. Note: South Twin Lake is identified with a blue star.

### William Epps Cormack

When William Epps Cormack travelled this part of Newfoundland in 1827 in search of Beothuk, he recorded seeing one of their "encampments" at the east end of South Twin Lake, which he referred to as "Badger Bay Great Lake" (Howley 1915: 190-191). He wrote in his journal "The settlement consisted of the remains of eight or ten winter mamateeks, each large enough for up to eighteen or twenty people, and each with a small square or oblong storage pit next to it." Cormack also recorded canoe rests and the remains of a "vapour bath" (sweat lodge) as well as trails travelling north to Badger Bay, and to the westward. Additional trails led to the southeast, in the direction of the Exploits River (Cormack 1822).


*Figure 5* Detail from Figure 3. Note: Red arrows point to locations of Beothuk wigwams and the dotted lines are trails used by Beothuk, as recorded in 1811. (Source: McLean 2023. Centre for Newfoundland Studies, catalogue # Nfld. Map G 3435 1820 C3).

#### Shanawdithit

Shanawdithit, believed to be the last of the Beothuk, lived in the Exploits River area. In April 1823, suffering from sickness and starvation, Shawnadithit, her mother and her sister travelled along the west side of what is now South Twin Lake to the coast at the bottom of Badger Bay. There English furriers captured them. They were eventually taken to St. John's by the Twillingate merchant and magistrate John Peyton Jr. While in St. John's Shanawdithit stayed, at least for a while, at the home of Governor Hamilton and his wife, Lady Hamilton. She also spent time in the home of William Epps Cormack, where Shanawdithit executed a number of sketches detailing the area around Exploits Bay, Badger Bay and Beothuk Lake (Cormack 1822: XI).

In the spring of 1823, Shanawdithit, along with her mother and sister, were captured by furriers near the bottom of Wild Bight (Badger Bay) (Marshall 1996). While living in St. John's, Shanawdithit made a series of sketches. On some of her sketches, Shanawdithit depicted, among other things, Beothuk trails in and around the Twin Lakes, west of the Exploits River and locations of several camps. Sketch IV is of particular importance to this project as it covers some of the area now contained in Parcel B. (Figure 6)



*Figure 6* Shanawdithit's Sketch IV, showing the area south of Badger Bay and Seal Bay, depicting the route (dotted lines outlined in red dashes) that she and others took in March and April 1823 from the interior to Badger Day. Note: South Twin Lake indicated by a blue star. (Source: McLean 2023; sketch from Howley 1915)

#### **Previous Archaeological Research**

Notre Dame Bay was, at various times over the past 5000 years or so, home to all the Indigenous populations that once lived in Newfoundland. The region near the Exploits River basin and watershed has been the focus of archaeological investigations since the mid-1960s. Mostly, these investigations have been limited to coastal areas; however, several surveys were carried out along the Exploits River, from Botwood to Beothuk Lake. See for example: Aardvark Archaeology 2007; Claesson, Stefan and Richard K. Wells 2011; Devereux 1966; Locke 1984; McLean 2022, 2023, 2016, 2017; Reynolds 1996,1997; Schwarz 1992a, 1992b.

These surveys have identified more than 200 archaeological sites along the coast between the Bay of Exploits and Halls Bay and on the Exploits River as far south as Beothuk Lake (Figure 7). Most of these sites were made by Indigenous groups, dating back thousands of years. Sites range in type from small hunting/procurement camps to villages featuring numerous house pits and associated features. Human burials have also be recorded in the area. Evidence of multiple habitations were found at numerous sites indicating these were important procurement locations utilized at different times in the past. For example, sites near the mouths of rivers, which were typically rich salmon-gathering locations, show use by various Indigenous and Non-Indigenous groups over the span of thousands of years.

The Indigenous groups living in this region in the Pre-contact period (pre-1500 AD) are: Maritime Archaic, Pre-Inuit, Beothuk ancestors (Beaches and Little Passage populations) and Middle Woodland Cow Head people. In the historic period, Beothuk, Mi'kmaq and Europeans also lived in this region. The PAO database also shows a number of twentieth-century non-Indigenous sites in the area. Sites associated with European/ Newfoundlander/ American activities in the region include logging camps, trappers' tilts, cemeteries and WW II-era gun placements and even airplane crash sites. Included in these European sites are two early twentieth-century logging camps near the south end of South Twin Lake. Table 1 is a list of all the recorded archaeological sites in the region.



*Figure 7* Detail of a map of Newfoundland showing the project parcels (outlined in pink) and the recorded archaeological sites (yellow dots). Courtesy of the Provincial Archaeology Office, Government of Newfoundland and Labrador.



Figure 8 Detail of Parcel A with the archaeological sites identified by yellow dots. Courtesy of the Provincial Archaeology Office, Government of Newfoundland and Labrador.



Figure 9 Detail of Parcel B with the archaeological sites identified by yellow dots. Courtesy of the Provincial Archaeology Office, Government of Newfoundland and Labrador.



Figure 10 Detail of Parcel C with the archaeological sites identified by yellow dots. Courtesy of the Provincial Archaeology Office, Government of Newfoundland and Labrador.

#### **Paleontological Resources**

According to Newfoundland and Labrador Regulation 67/11 of the Historic Resources Act, (<u>www.assembly.nl.ca/legislation/sr/regulations/rc110067.htm#5</u>), there are no paleontological resources recorded in any of the impact zones for this project. Should paleontological specimens be discovered during the project, the authorities within the Provincial Archaeology Office should be notified immediately.

#### Discussion

The three parcels of land proposed for development are located in an area where over 200 archaeological sites have been recorded. Evidence of land use and habitation date back nearly 5000 years, making this one of the earliest inhabited regions of the island of Newfoundland. Archaeological sites have been found along the coast, in places along the Exploits River, and also in the near interior (within 30 km of the coast). Perhaps the most culturally significant aspect of the area proposed for this project is its association with the unfortunate demise of the Indigenous Beothuk population in the late 1820s.

Beothuk have traditionally inhabited the areas along the Exploits River basin, southwards to Beothuk Lake (formerly Red Indian Lake). By the second quarter of the eighteenth century, English settlers began trapping fur-bearing animals and taking salmon near the mouths of larger rivers in the bay, where they sometimes encountered Beothuks. Beothuks had customarily taken salmon from the same rivers and bird's eggs from nearby islands. These encounters were often violent, and most often the Beothuks were shot at and sometimes captured or even killed by settlers. It is understood that Beothuk intentionally moved their fall/winter camps away from the coast and river banks to avoid being seen by Europeans. Eyewitness accounts of abandoned Beothuk encampments along the Exploits River and on the numerous lesser waterways and lakes in the area, attest to their presence there during the late eighteenth century and early nineteenth century.

Archaeological investigations in this region were mainly along the Atlantic coast or along the Exploits River. Until recently, little attention has been paid to the interior, although historic documents indicate the Beothuk also inhabited locations within a few kilometres of the coast and the banks of the Exploits River. It should be noted that there is a good chance that Indigenous groups, who predate the Beothuk, also lived in the Exploits River basin and region, and they too may have utilized the near interior resources during their cyclical rounds.

Dr. Fred Schwarz, an archaeologist with decades of experience working in the province, surveyed the Exploits River in 1992. One of the recommendations in his report was for additional archaeological surveys of the lakes north and west of that river (Schwarz 1992a: 44). Schwarz had previously surveyed the area around Gambo Pond, another large lake in Newfoundland's near interior where he located Indigenous archaeological sites dating back some 2000 years (Schwarz 1992b). The interior regions of Newfoundland have not seen the same level of archaeological attention as the coastal areas. This is not the result of negligence on behalf of researchers. Anyone who has travelled on foot in the interior of Newfoundland can attest to the dense forest cover and difficult terrain, making it a challenging place to search for evidence of past human activity. When projects such as this one near Botwood, are proposed for the interior of the province, care should be taken to mitigate negative impact to any potential Beothuk winter villages and/or associated features. History tells us that these locations were preferred by Beothuk in the latter eighteenth century and early nineteenth century when they were most fearful of Europeans.

Since the early twentieth century, logging activities, including access roads, in the region may have disturbed any evidence of early Indigenous habitation in this area. Cabins and related recreational features, built in recent decades on a number of the lakes and ponds in the region likely also negatively affected potential archaeological resources. Until an archaeological survey is carried out in the three parcels of land proposed for this project, there is no way of determining whether there are cultural resources within these areas.

#### Acknowledgements

The author acknowledges and appreciates the following people and organizations for their assistance in preparing this report. Steve Hull, of the Provincial Archaeology Office, provided site location maps and access to the PAO database. Ms. Jackie Hillier and the staff of Memorial University's Centre for Newfoundland Studies provided access to some of the historic maps of the area. Edwina Mills and Steve Hull provided editorial advice and comments. Finally, thank-you to Ms. Nicole Thomas and the GIS team of Strum Consulting for guidance and technical support.

#### References

Aardvark Archaeology

2007 HRIA of Berry Island, Point Learnington Newfoundland and Labrador. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

#### Burgess, Neil

2023 Exploration for Shipwrecks near Roberts Arm and Pilleys Island, Newfoundland & Labrador Interim Project Report Permit 22.01. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

Cartwright, John

1773 Remarks on the situation of the Red Indians, Natives of Newfoundland; with some account of their manner of living together with such descriptions as are necessary to the explanation of the sketch of the Country they inhabit, taken on the spot in the year 1768. Manuscript report in possession of the author.

#### Cartwright, F.D

1826 Life and Correspondence of Major Cartwright. Published by Burt Franklin, 235 East 44th St. New York, N.Y.

#### Claesson, Stefan and Richard K. Wells

2011 Interim Search and Recovery Report CIL 2011-101, a VS-44A Aircraft Crash Site (CA-00007) Correlated with WWII-169, Vicinity of Botwood, Newfoundland, Newfoundland and Labrador Province, Canada, 10 August to 4 September 2011. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

#### Cormack, William E.

1822 Narrative of a Journey Across the Island of Newfoundland in 1822. London: Longmans, Green and Company, London. Republished in 1928.

#### Devereux, Helen

1966 A Summary of the Archaeological Investigation of the Beothuk of Newfoundland, July August 1966. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

Fleming, Robyn D.

2008 Excavation of the Recent Indian Site Roberts Cove 1 (DjAv-05), Located in Western Notre Dame Bay: Interim Report. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

#### Gilbert, William

1996 The Recent Indian Occupation of the Exploits River/Red Indian Lake Region: A Reevaluation of the Archaeological Evidence. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

#### Holly, Donald Jr.

- 2013 History in the Making: The Archaeology of the Eastern Subarctic. Altamira Press, Walnut Creek CA.
- 2002 Subarctic "Prehistory" in the Anthropological Imagination. Arctic Anthropology, Vol. 39, No. 1/2 (2002), pp. 10-26.

#### Howley, James

1915 The Beothucks or Red Indians: The Aboriginal Inhabitants of Newfoundland. Cambridge University Press. Republished in 1974 by Coles Publishing Company, Toronto.

#### LeBlanc, Raymond

1973 The Wigwam Brook Site and the Historic Beothuk Indians. Memorial University of Newfoundland, Unpublished Masters Thesis.

#### Locke, Don

1984 Beothuck Artifacts. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

Marshall, Ingeborg

- 1996 A History and Ethnography of the Beothuk. McGill-Queen's University Press.
- 1973 Survey of Beothuk Indian Burials in Bay of Exploits, Notre Dame Bay. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

#### McLean, Laurie

- 2022 Final Report for an Archaeological Survey of Badger Bay, Newfoundland. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 2023 Tracing Shanawdithit: Badger Bay and Badger Bay Watershed Archaeological Project. Research Proposal submitted to the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

- 2017 Preliminary Report for an Archaeological Survey of Thwart Island and Part of the Point of Bay Shoreline, Bay of Exploits, Notre Dame Bay. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 2016 Preliminary Report for an Archaeological Survey of the Four Mile Rapids Site (DfAv-01) and the South Bank of the Exploits River Opposite the Grand Falls-Windsor Boat Launch Permit 16.11. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 2010 An Archaeological Survey of Hall's Bay, Notre Dame Bay, Newfoundland. Manuscript report on file, Provincial Archaeology Office, Department of Tourism, Culture, Industry and Innovation; Government of Newfoundland and Labrador. St. John's

#### Pastore, Ralph

- 1989 The Collapse of the Beothuk World. Acadiensis, Vol. 19, No. 1 (Fall), pp. 52-71.
- 1981 A Survey of the Pilley's Island Region. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

Penney, Gerald

- 2005 HROA (Stage 1) Wigwam Point Interpretation Centre, Peterview, NL. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 2001 Historic Resource Overview Assessment (Stage 1) of a Proposed 50 km Walking/Hiking Trail between Point Learnington and Leading Tickles, Notre Dame Bay - Draft Report (00.10). Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 1988 An Archaeological Survey of Western Notre Dame Bay and Green Bay 87.20. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

Reynolds, Ken

- 2015 Trip to North Twin Lake: Permit# 03.18 June 11th- 13th, 2003. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 1996 Final Report on an Archaeological Recognizance of Daniel's Harbour, St. Paul's, Garia Bay and Burgeo. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

1997 Report on Preliminary Investigation into Human Remains Found at Botwood, Newfoundland DgAu-8. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

#### Schwarz, Fred

- 2020 Archaeological Survey of Charles Brook and Pond, Bay of Exploits, NL PAO Permit # 20.31. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 2015 Exploring Beothuk Housepits at Nimrods Pool, Two Mile Island and a Cemetery at Glenwood Permit 15.18. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 1994a The Exploits Valley Archaeological Project: A Report on the 1994 Field Season. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 1994b Paleo-Eskimo And Recent Indian Subsistence And Settlement Patterns On The Island Of Newfoundland. Northeast Anthropology. no. 47, Spring, pp. 55-70.
- 1992a Archaeological Investigations in the Exploits Basin Report on the 1992 Field Survey. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.
- 1992b Archaeological Investigations in the Newfoundland Interior. Manuscript report on file at the Provincial Archaeology Office, Dept. of Tourism, Culture, Arts and Recreation, Government of Newfoundland and Labrador.

| DfAr-02 | Glenwood cemetery         | Euro-American                                      |
|---------|---------------------------|----------------------------------------------------|
| DfAv-01 | Four Mile Rapids          | Beothuk; precontact                                |
| DfAv-02 | Bulldozer Cut Site        | Precontact                                         |
| DfAv-03 | Pelley                    | Mi'kmaq?; Euro-American?                           |
| DfAv-04 | Wooden Eagle              | Beothuk?                                           |
| DfAw-01 | North Angle               | Maritime Archaic; Pre-Inuit (Late?); Beothuk       |
| DfAw-02 | Beaver Island             | Beothuk                                            |
| DfAw-03 | Boom Island               | Recent First Nation; Beothuk; Euro-American        |
| DfAw-04 | Aspen Island I            | Beothuk                                            |
| DfAw-05 | Aspen Island II           | Maritime Archaic?; Pre-Inuit (Early); Pre-Inuit    |
|         | _                         | (Late); Recent First Nation; Beothuk               |
| DfAw-06 | Aspen Island III          | Beothuk                                            |
| DfAw-07 | South Exploits            | Pre-Inuit (Early); Pre-Inuit (Late?); Recent First |
|         |                           | Nation; Beothuk                                    |
| DfAw-08 | Grand Falls 1             | Maritime Archaic                                   |
| DfAw-09 | Rushy Brook 1             | Precontact                                         |
| DfAw-10 | Rushy Pond 1              | Recent First Nation                                |
| DfAw-11 | Goodyear's Dam 1          | Precontact?; European?                             |
| DfAw-12 | Nimrod's Pool             | Euro-American                                      |
| DfAx-01 | Studio Site               | Precontact                                         |
| DfAx-02 | Pynn's Brook              | Precontact                                         |
| DfAx-03 | Terrace Site              | Precontact                                         |
| DfAx-04 | Old House                 | Beothuk                                            |
| DfBa-01 | Pope's Point              | Maritime Archaic; Pre-Inuit (Late); Recent First   |
|         | -                         | Nation; Beothuk; Mi'kmaq                           |
| DfBa-05 | Slaughter Island 1        | Beothuk                                            |
| DfBa-06 | Little Red Indian Brook 1 | Beothuk; Mi'kmaq; Undetermined; Precontact;        |
|         |                           | Euro-American                                      |
| DfBa-07 | South Badger 1            | Precontact                                         |
| DfBa-11 | Badger Chute              | Beothuk                                            |
| DfBa-12 | Badger Beothuk;           | Mi'kmaq                                            |
| DfBa-17 | Junction Brook 2          | Beothuk; Euro-American                             |
| DgAq-03 | Hurricane 5653            | Euro-American                                      |
| DgAt-01 | Rattling Brook            | Maritime Archaic; Pre-Inuit (Late); Recent First   |
| -       | -                         | Nation                                             |
| DgAt-02 | Gill's Point 1            | Precontact; European                               |
| DgAt-03 | Gill's Point 2            | European                                           |
| DgAt-04 | Gill's Point 3            | Precontact; European                               |
| DgAt-05 | Gill's Point 4            | European                                           |
| DgAt-06 | Gill's Point 5            | European                                           |
| DgAt-07 | Peterview 1               | Precontact                                         |
| DgAt-08 | Peterview 2               | Maritime Archaic                                   |
| DgAt-09 | Wigwam Point              | Pre-Inuit; European; Mi'kmaq                       |
|         |                           |                                                    |

## Table 1Archaeological Site between Halls Bay and the Bay of ExploitsBORDEN #SITE NAMECULTURE

| BORDEN # | SITE NAME                    | CULTURE                                         |
|----------|------------------------------|-------------------------------------------------|
| DgAt-10  | Upper Sandy Point 1          | Precontact; European                            |
| DgAt-11  | Wigwam Point Cemetery        | Mi'kmaq?                                        |
| DgAt-12  | Upper Sandy Point 2          | European                                        |
| DgAt-13  | Rattling Brook 2             | European                                        |
| DgAt-14  | Sikorsky VS.44 - Excalibur   | Euro-American                                   |
| DgAt-15  | Consolidated Canso 9834      | Euro-American                                   |
| DgAu-01  | Evans Point 1                | Pre-Inuit (Late); European                      |
| DgAu-02  | Muddy Hole Point 1           | Pre-Inuit                                       |
| DgAu-03  | King's Ridge 1               | Precontact                                      |
| DgAu-04  | Peterview 3                  | European                                        |
| DgAu-05  | Silver Cove South 1          | Precontact; European                            |
| DgAu-06  | High Point                   | Pre-Inuit (Late)                                |
| DgAu-07  | Flat Rattle 1                | Pre-Inuit                                       |
| DgAu-08  | King's Ridge 2               | European                                        |
| DgAu-09  | Botwoodville Biface          | Recent First Nation                             |
| DhAr-01  | Campbellton                  | Maritime Archaic; Pre-Inuit (Late)              |
| DhAr-02  | Thornley Site                | Maritime Archaic                                |
| DhAr-03  | Campbellton 2                | Recent First Nation                             |
| DhAr-04  | Loon Bay 1                   | Maritime Archaic; Undetermined                  |
| DhAr-05  | Loon Bay 2                   | Pre-Inuit (Early); Pre-Inuit (Late)?            |
| DhAr-06  | Loon Bay 3                   | Pre-Inuit (Early)?                              |
| DhAr-07  | Loon Bay 4                   | Precontact                                      |
| DhAr-08  | Loon Bay 5                   | Maritime Archaic; Recent First Nation?; Euro-   |
|          |                              | American                                        |
| DhAs-01  | HMS Calypso                  | European                                        |
| DhAs-02  | Alfred's Cove Site           | Maritime Archaic                                |
| DhAs-03  | Ventura AE 793               | European                                        |
| DhAs-04  | Thwart Island Mound          | Aboriginal?; Undetermined                       |
| DhAs-05  | Thwart Island-East           | Precontact                                      |
| DhAs-06  | Thwart Island-South          | Pre-Inuit; Euro-American                        |
| DhAs-07  | Embree 1                     | Euro-American                                   |
| DhAs-08  | Foulke Cove 1                | European                                        |
| DhAs-09  | Foulke Cove Tilt             | Euro-American                                   |
| DhAt-01  | Cabbage Cove                 | Beothuk?                                        |
| DhAt-02  | Lower Sandy Point            | Pre-Inuit (Late); Precontact; Beothuk; European |
| DhAt-03  | Winter House Cove 1          | Maritime Archaic                                |
| DhAt-04  | Winter House Cove 3          | Precontact                                      |
| DhAt-05  | Apple Blossom                | European                                        |
| DhAt-06  | Ledrew's Garden              | Precontact; European                            |
| DhAt-07  | Burnt Arm 1                  | European                                        |
| DhAt-08  | Burnt Arm 2                  | European                                        |
| DhAt-09  | Porterville I                | Maritime Archaic                                |
| DhAt-10  | Phillips Head Battery        | European                                        |
| DhAt-11  | Porterville 2                | Precontact                                      |
| DhAt-12  | Indian Cove, Bay of Exploits | Beotnuk?; European                              |
| DhAt-13  | Red Cliff 1                  | European                                        |

| BORDEN # | SITE NAME                      | CULTURE                                                               |
|----------|--------------------------------|-----------------------------------------------------------------------|
| DhAt-14  | Wiseman Head Battery           | European                                                              |
| DhAt-15  | Indian Cove-South              | Recent First Nation; Beothuk                                          |
| DhAt-16  | Old Cabin                      | Precontact?; Euro-American                                            |
| DhAt-17  | Rimmer                         | Precontact                                                            |
| DhAt-18  | Thwart Island-Outcrop          | Precontact                                                            |
| DhAt-19  | Wells                          | Pre-Inuit                                                             |
| DhAt-20  | Wild Bight Loggers Camp        | Euro-American                                                         |
| DhAt-21  | Wild Bight Loggers Camp 2      | Euro-American                                                         |
| DhAt-22  | Wild Bight Sawmill             | Euro-American                                                         |
| DhAt-23  | Indian Cove 2, Bay of Exploits | Precontact; Beothuk?                                                  |
| DhAu-01  | Point Leamington               | Pre-Inuit (Late)                                                      |
| DhAx-01  | North Twin Lake 1              | Euro-American                                                         |
| DhAx-02  | North Twin Lake 2              | Euro-American                                                         |
| DhAx-03  | Rocky Pond                     | Precontact                                                            |
| DiAr-01  | Comfort Island Burial          | Beothuk                                                               |
| DiAr-02  | Knights Island                 | Undetermined                                                          |
| DiAr-03  | Spirit Cove Burial             | Beothuk                                                               |
| DiAr-04  | Newstead 1                     | Pre-Inuit (Late)                                                      |
| DiAr-05  | Newstead 2                     | Maritime Archaic                                                      |
| DiAr-06  | Comfort Cove                   | Precontact                                                            |
| DiAr-07  | Birchy Island Tickle           | Pre-Inuit (Late); Recent First Nation?; European                      |
| DiAr-08  | Cranberry Island               | Beothuk                                                               |
| DiAr-09  | Yellow Fox Island              | Beothuk                                                               |
| DiAr-10  | Western Harbour 1              | Precontact                                                            |
| DiAr-11  | Western Harbour 2              | Euro-American                                                         |
| DiAr-12  | Camel Island 1                 | Precontact                                                            |
| DiAr-13  | Eastern Harbour 1              | Euro-American                                                         |
| DiAr-14  | Eastern Harbour 2              | Precontact; Euro-American                                             |
| DiAr-15  | Browns Room                    | Beothuk?; Euro-American                                               |
| DiAr-16  | South Samson Island 1          | Pre-Inuit (Late)                                                      |
| DiAr-17  | South Samson Island 2          | Precontact                                                            |
| DiAr-18  | South Samson Island 3          | Precontact                                                            |
| DiAr-19  | Yellow Fox Island 2            | Undetermined                                                          |
| DiAr-20  | Spirit Cove Pits               | Undetermined                                                          |
| DiAs-01  | Ochre Pit Island               | Maritime Archaic                                                      |
| DiAs-02  | South West Harbour             | Pre-Inuit (Early); Pre-Inuit (Late); Recent First<br>Nation: Beothuk? |
| DiAs-06  | Long Island 6                  | Beothuk                                                               |
| DiAs-07  | Ochre Pit Island Cobble Pits   | Beothuk: Undetermined                                                 |
| DiAs-09  | Swan Island Burial             | Pre-Inuit (Early): Beothuk                                            |
| DiAs-10  | Swan Island                    | Maritime Archaic? Pre-Inuit (Late): Recent                            |
|          |                                | First Nation                                                          |
| DiAs-11  | Pond Island Cobble Pits        | Undetermined                                                          |
| DiAs-12  | Shoal Tickle 1                 | Pre-Inuit (Early)                                                     |
| DiAs-13  | Thwart Island-Northeast        | Precontact                                                            |
| DiAt-01  | Rendell's Cove Cobble Pit      | Undetermined                                                          |
|          |                                |                                                                       |

| BORDEN # | SITE NAME                      | CULTURE                                        |
|----------|--------------------------------|------------------------------------------------|
| DiAt-02  | Charles Arm Rockshelter Burial | Recent First Nation; Beothuk                   |
| DiAt-03  | High Grego Burial Site         | Beothuk?                                       |
| DiAt-04  | Charles Brook 1                | Pre-Inuit (Late)                               |
| DiAt-05  | Winter Tickle 1                | Maritime Archaic; Pre-Inuit (Early); Pre-Inuit |
|          |                                | (Late); Recent First Nation                    |
| DiAt-06  | Charles Brook 3                | Recent First Nation; Euro-American             |
| DiAt-07  | Winter Tickle 2                | Precontact?; Beothuk?; European?               |
| DiAt-08  | Pleasantview                   | European; Beothuk?                             |
| DiAt-09  | South Arm                      | Pre-Inuit; Recent First Nation?                |
| DiAt-10  | Charles Brook Lookout          | Beothuk?                                       |
| DiAt-11  | Charles Brook 2 - Schwarz      | Beothuk; Precontact?                           |
| DiAt-12  | Winter Tickle 3                | Maritime Archaic                               |
| DiAt-13  | Winter Tickle Burial           | Beothuk                                        |
| DiAt-14  | Winter Tickle Intertidal       | Precontact                                     |
| DiAt-15  | Hoskins Harbour                | Precontact                                     |
| DiAt-16  | Rendells Cove-East             | Precontact                                     |
| DiAt-17  | Charles Brook Cemetery         | Euro-American                                  |
| DiAu-01  | Thomas Rowsell Island          | Pre-Inuit (Late)                               |
| DiAu-02  | Berry Island Site              | Precontact; European                           |
| DiAu-03  | Woodward's Cabin               | Maritime Archaic; Pre-Inuit (Late); Beothuk?   |
| DiAu-05  | Besom Cove                     | Precontact                                     |
| DiAu-06  | Southern Lake treefall         | Precontact                                     |
| DiAu-07  | Southern Lake surface find     | Precontact                                     |
| DiAu-08  | Southern Lake southwest        | Precontact                                     |
| DiAu-09  | Mussel Bed Cove                | Precontact                                     |
| DiAv-01  | Seal Bay Burial Cave           | Beothuk                                        |
| DiAv-03  | Indian Cove                    | Pre-Inuit (Late?)                              |
| DiAv-04  | Wild Bight 2                   | Precontact; European                           |
| DiAv-05  | Wild Bight 3                   | Undetermined                                   |
| DiAv-06  | Badger Bay 5                   | Recent First Nation; Beothuk                   |
| DiAv-07  | Badger Bay 6                   | Maritime Archaic; Pre-Inuit; Precontact;       |
|          |                                | European                                       |
| DiAv-08  | Wild Bight 1                   | Precontact; European                           |
| DiAw-01  | Robert's Arm 1                 | Pre-Inuit (Early)                              |
| DiAw-02  | Robert's Arm 2                 | Precontact; European                           |
| DiAw-03  | Robert's Arm 3                 | Precontact                                     |
| DiAw-04  | Robert's Arm 4                 | Maritime Archaic; European                     |
| DiAw-05  | Badger Bay 1                   | Pre-Inuit (Late); Recent First Nation?         |
| DiAw-06  | Badger Bay 2                   | Precontact; European                           |
| DiAw-07  | Badger Bay 7                   | European                                       |
| DiAw-08  | Badger Bay 3                   | Beothuk?; European                             |
| DiAw-09  | Badger Bay 4                   | Pre-Inuit (Late); Euro-American                |
| DiAw-10  | Sop's Arm, Green Bay           | European                                       |
| DiAw-11  | Picnic Island                  | Precontact; European                           |
| DiAw-12  | Pretty Island                  | Pre-Inuit                                      |
| DiAw-13  | Pilley's Tickle                | Precontact                                     |

| BORDEN # | SITE NAME                   | CULTURE                                   |
|----------|-----------------------------|-------------------------------------------|
| DiAw-14  | Crescent Lake 2             | Precontact                                |
| DiAw-15  | Pretty Tickle Precontact    |                                           |
| DiAw-16  | Tommy's Arm Brook           | Euro-American                             |
| DiAw-17  | Tommy's Arm 1               | Euro-American                             |
| DiAw-18  | Badger Bay Bottom           | Beothuk; Euro-American                    |
| DiAw-19  | Badger Bay Bottom 2         | Beothuk; Euro-American                    |
| DiAw-20  | Sops Arm South              | Pre-Inuit; Euro-American                  |
| DiAw-21  | Raft Tickle                 | Beothuk?; Precontact                      |
| DiAw-22  | Pine Lake barge shipwreck   | Euro-American                             |
| DiAx-01  | Crescent Lake 1             | Maritime Archaic                          |
| DjAr-02  | Black Island                | Beothuk                                   |
| DjAr-03  | Little Black Island         | Beothuk                                   |
| DjAr-07  | Cottles Island-East         | Precontct?; Beothuk?                      |
| DjAr-08  | Cottles Island-West         | Pre-Inuit                                 |
| DjAr-09  | Herring Cove                | Euro-American?; Beothuk?                  |
| DjAr-11  | Puzzle Harbour East         | Precontact?; Beothuk?                     |
| DjAr-12  | Puzzle Harbour North        | Precontact?; Beothuk?                     |
| DjAr-13  | Puzzle Harbour Northwest    | Euro-American; Precontact?; Beothuk?      |
| DjAr-14  | Puzzle Harbour Workshop     | Precontact?; Beothuk?                     |
| DjAr-15  | Puzzle Harbour Head         | Precontact?; Beothuk?                     |
| DjAr-18  | Charlies Park               | Euro-American                             |
| DjAs-01  | Exploits Island             | Recent First Nation                       |
| DjAs-02  | Matthew Lane Island         | Pre-Inuit (Early?); Pre-Inuit (Late?)     |
| DjAv-05  | Robert's Cove 1             | Recent First Nation; European             |
| DjAv-09  | Triton Island 1             | Beothuk                                   |
| DjAw-04  | Pilley's Island 1           | Pre-Inuit (Late); European                |
| DjAw-16  | Devils Cove                 | Recent First Nation; Beothuk              |
| DjAw-17  | Big Island Burial 1         | Beothuk; Recent First Nation?             |
| DjAw-18  | Big Island Burial 2         | Beothuk; Recent First Nation?             |
| DjAw-23  | Moulton                     | Euro-American                             |
| DjAw-24  | Norman O schooner shipwreck | Euro-American                             |
| DjAx-01  | Port Anson 1                | Precontact                                |
| DjAx-02  | Port Anson 2                | Maritime Archaic (Southern Branch); Euro- |
|          |                             | American                                  |

APPENDIX E PUBLIC MEETINGS/INFORMATION SESSIONS

# Summary Table of EVREC Engagement with Stakeholders

| Organization                                            | Frequency   | Concerns/Topics                          |
|---------------------------------------------------------|-------------|------------------------------------------|
|                                                         |             | Project Updates, Regulatory and Framing  |
| Transport Canada                                        | Monthly     | Discussions                              |
|                                                         |             | Project Updates, Regulatory and Framing  |
| Environment Canada                                      | As required | Discussions                              |
|                                                         |             | Project Updates, Request for Power,      |
| NL Hydro                                                | As required | Connection Agreement submitted           |
|                                                         |             | Project Updates, Request for Power,      |
| NLPower                                                 | Quarterly   | Connection Agreement submitted           |
| NL Department of Environment and Climate Change         |             | Project Updates, Regulatory and Framing  |
| (Water, Lands Divisions)                                | As required | Discussions                              |
|                                                         |             | Project Updates, Regulatory and Framing  |
| NL Department of Culture (Provincial Archeology Office) | As required | Discussions                              |
|                                                         |             | Project Updates, Regulatory and Framing  |
| NL Department of Fisheries, Forestry & Agriculture      | As required | Discussions                              |
| Department of Industry, Energy & Technology             | Monthly     | Project Updates                          |
| Grand Falls (Water Treatment Plant)                     |             | No impact envisioned at this time.       |
|                                                         |             | Project Updates, Economic Benefits       |
| MHA Exploits                                            | Bi Monthly  | Provided , Support Letter Provided       |
| Shalloway Family Practice Network                       | As required | Project Updates, No concerns             |
|                                                         |             | Project Updates, Introduction to Benefit |
|                                                         |             | Agreements, Investment opportunities,    |
| Qalipu First Nation                                     | Monthly     | Support Letter Provided                  |
|                                                         |             | Project Updates, Member of Energy NL,    |
|                                                         |             | Attend conferences, Industry supporter,  |
| Energy NL                                               | Bi Monthly  | Participate in work groups               |
|                                                         |             | Project Updates, Industry supporter,     |
| Econext                                                 | Quarterly   | Participate in work groups               |
| Professional Engineers and Geoscientists Newfoundland   |             |                                          |
| and Labrador                                            | As required | Project Updates                          |
|                                                         |             | Project Updates, no concerns, Support    |
| Botwood Fire & Rescue                                   | As required | Letter Provided                          |
|                                                         |             | Project Updates, no concerns, Support    |
| Exploits Valley Port Corporation (EVPC)                 | Weekly      | Letter Provided                          |
|                                                         |             | Project Updates, concerns raised,        |
| New Bay Pond cabin owners                               | As required | discussions ongoing                      |
|                                                         |             | Project Updates, no concerns, Support    |
| Exploits Regional Chamber of Commerce                   | Quarterly   | Letter Provided                          |
|                                                         |             | Project Updates, concern raised,         |
| oceanside country lodge                                 | Monthly     | discussions ongoing                      |

| Organization                                     | Frequency    | Concerns/Topics                             |
|--------------------------------------------------|--------------|---------------------------------------------|
|                                                  |              | Project Updates, no concerns, Support       |
| Newfoundland and Labrador Outfitters Association | As required  | Letter Provided                             |
|                                                  |              |                                             |
| Newfoundland Association of Hunters and Anglers  | As required  | Project Updates                             |
| Newfoundland and Labrador Snowmobile Federation  |              | Project Updates, no concerns, Support       |
| (Central)                                        | As required  | Letter Provided                             |
| Hideaway Lodge                                   | Monthly      | Project Updates, discussions ongoing        |
|                                                  | -            |                                             |
| A1 Hunts Twin Lakes                              | Monthly      | Project Updates, discussions ongoing        |
|                                                  |              | Project Updates, no concerns, Support       |
| Leading Tickles                                  | Bi weekly    | Letter Provided                             |
|                                                  |              | Project Updates, no concerns, Support       |
| Botwood                                          | Bi weekly    | Letter Provided                             |
|                                                  |              | Project Updates, no concerns,Support        |
| Point Leamington                                 | Bi weekly    | Letter Provided                             |
|                                                  |              | Project Updates, no concerns,Support        |
| Bishop Falls                                     | Bi weekly    | Letter Provided                             |
|                                                  |              | Project Updates, no concerns,Support        |
| Northern Arm                                     | Bi weekly    | Letter Provided                             |
|                                                  |              | Project Updates, no concerns,Support        |
| Grand Falls-Windsor                              | Bi weekly    | Letter Provided                             |
|                                                  |              | Project Updates, no concerns,Support        |
| Peterview                                        | Bi weekly    | Letter Provided                             |
| LSD Phillips Head                                | Bi weekly    | Project Updates, no concerns                |
| Point of Bay                                     | Bi weekly    | Project Updates, no concerns                |
| LSD Pleasantview                                 | Bi weekly    | Project Updates, no concerns                |
| LSD Glovers Harbour                              | Bi weekly    | Project Updates, no concerns                |
|                                                  |              | Project Updates, no concerns, Support       |
| Snowmobile and ATV Association                   | Twice Yearly | Letter Provided                             |
|                                                  |              | Project Updates, no concerns, Support       |
| Trades NL                                        | As required  | Letter Provided                             |
| ACOA                                             | Bi-monthly   | Project Updates, Industry Supporter         |
|                                                  |              | Project Updates, applications submitted, no |
| Nav Canada                                       | As required  | concerns                                    |
| Environment and Climate Change Canada            | As required  | Project Updates                             |
|                                                  | Monthly      | Project Updates, industry Supporter         |
| Corner Breek Dulp and Daner                      | Monthly      | Project Opdates, no concerns, Support       |
| Conner Brook Pulp and Paper                      |              | Letter Provided                             |
| Canadian Coast Cuard                             | As required  | Project Updates                             |
| Callduidii Cuasi Gualu                           | As required  | Project Updates                             |
| Royal Canadian Mounted Police                    | As required  | Project Opdates, no concerns                |

### **Common Questions & Answers:**

| Who is EVREC?              | EVREC is a green energy project development company with goals aligned to those of the Canadian Government to set the country on a path to meet climate change goals of net-<br>zero greenhouse gas emissions by 2050 (Government of Canada 2023). The management and shareholders of EVREC have both a long track record of investing in Canadian companies that support the energy transition, and the proven capability of executing and delivering large industrial infrastructure and energy projects. We are proud Canadians and excited to have the opportunity to realize such an important project for our future generations. |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | The EVREC Project is a large-scale power to X (P2X) project in the Central Newfoundland region that will generate clean electricity for its own use from an onshore wind farm to produce zero-carbon hydrogen and ammonia at scale. The Project will contribute to positioning Canada as a global leader in clean hydrogen production, use, and export. As renewable hydrogen and ammonia are critical solutions for hard to abate industries (difficult-to-decarbonize), the Project has the potential to transform the path to global                                                                                                 |
| What is the EVREC Project? | The project components include: an onshore wind farm with a targeted capacity of +3GW and associated infrastructure; molecular and energy storage; a hydrogen and ammonia production facility and an integrated port infrastructure. The EVREC project will produce                                                                                                                                                                                                                                                                                                                                                                     |
|                            | ammonia by utilizing green hydrogen as feedstock for an electrified Haber-Bosch process,<br>powered by renewable electricity, instead of natural gas, resulting in no CO2 emissions.<br>In the development of the Project and the associated model, the proponents have taken<br>a realistic view in all assumptions and have attempted to mitigate any risks by                                                                                                                                                                                                                                                                        |
|                            | implementing proven technology and conservative approaches in assumptions and risk mitigation practices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| EVREC is a "Power to X" or "P2X" project, what does that mean?                                     | P2X or "Power to X" refers to processes that involve the conversion of power (P) into<br>another form, typically a fuel or gas (X). The production of hydrogen (H2) through<br>electrolysis or the synthesis of synthetic fuels such as ammonia are Power to X processes.<br>The concept is part of the broader transition towards more sustainable and flexible<br>energy systems as it can lessen CO2 in hard to abate industrial sectors. EVREC is taking<br>the historically intense CO2 production of both hydrogen and ammonia and turning those<br>processes 100% green.                                                   |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The EVREC project was awarded<br>through a competitive government<br>process, what does this mean? | The Department of Industry, Energy and Technology (IET) is the ministry in Newfoundland<br>and Labrador that oversees the development of new industries and projects such as<br>EVREC. As part of the process, there was a call for crown lands and 3.8 million hectares of<br>land were nominated. These lands went through an interdepartmental review and land<br>constraint analysis, and IET presented for a bid of 1.66 million hectares. For more<br>information, please visit the link Virtual Engagement Sessions on Land Areas of Interest<br>for Wind Energy Projects Launching Next Week - News Releases (gov.nl.ca). |
|                                                                                                    | IET then launched a Crown Land Call for Bids for Wind Energy Projects (Call for Bids) for<br>specific Crown Lands on December 14, 2022, which closed on March 23, 2023. IET<br>received 24 bids from 19 companies (including EVREC), which underwent a stage one<br>review, including criteria such as the bidder's experience and financial capacity to plan,<br>construct, and operate the proposed project. Nine bids from nine companies were<br>approved to proceed to stage two.                                                                                                                                            |
|                                                                                                    | The stage two review included a deeper examination of the bidder's experience, the proposed projects, and the project financing plan, as well as an examination of additional information on the electricity grid connection requirements, community and Indigenous engagement, and benefits to the province.                                                                                                                                                                                                                                                                                                                     |
|                                                                                                    | IET announced that four bids from four companies (including EVREC) received wind<br>application recommendation letters and have been granted the exclusive right to pursue<br>the development of their projects through the Government of Newfoundland and<br>Labrador crown land application and approval process, which includes a referral to<br>Environmental Assessment (EA).                                                                                                                                                                                                                                                |

|                                                                                                                                              | The Crown Lands and EA processes will provide final project details, such as wind turbine locations. For more information on the process, please visit the link Crown Land Call for Bids for Wind Energy Projects - Industry, Energy and Technology (gov.nl.ca).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What will projects like EVREC<br>mean for the province of<br>Newfoundland and Labrador?                                                      | These projects will produce green hydrogen and ammonia for use in Canada and for export globally. Estimates show project lifespans can be as long as 50 years from construction completion through decommissioning. Monetarily, an estimate is that the EVREC project alone will increase the annual GDP of the province of Newfoundland and Labrador by over 5% <sup>1</sup> , offset over 1.5 million tonnes of CO2 every year <sup>2</sup> , and contribute over CAD\$5 billion <sup>3</sup> to Newfoundlanders through remittances to the provincial budget as well as various stakeholder benefit agreements. All projects will also pay provincial corporate tax and water royalties to the province. Peak full-time employment in the area is expected to exceed 11,500 jobs. The projects aim to ensure the development and use of the province's Crown Lands for wind energy projects is done in a manner that ensures the greatest long-term benefit for residents of the province. For more information on the process, visit the link Crown Land Call for Bids for Wind Energy Projects /Industry, Energy and Technology (gov.nl.ca). |
| Why is there such positive interest<br>in Newfoundland and Labrador,<br>when it comes to P2X and<br>renewable energy projects like<br>EVREC? | The Province of Newfoundland and Labrador is ideally positioned with qualities, which<br>when combined, give it a unique competitive edge globally for hosting projects such as<br>EVREC. It has one of the world's most accessible onshore wind resources and an<br>abundance of fresh water - the main components for large scale P2X projects like EVREC.<br>The province is strategically located on the main Atlantic shipping route, giving access to<br>global markets for its product, with the primary market being western Europe and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>&</sup>lt;sup>1</sup> Assuming the estimated project revenue upon full project COD and the Provincial GDP of 29 billion CAD.

<sup>&</sup>lt;sup>2</sup> Based on most up to date hydrogen production numbers and a 100% offset of hydrogen produced via steam methane reforming with a carbon coefficient of 10 kgCO2/kgH2

<sup>&</sup>lt;sup>3</sup> Includes the estimated economic impacts associated with operations and the spending of provincial tax/royalty revenues on public services. Values shown in 2024 dollars

|                                                         | gateway ports. Additionally, Canada's stable economy and transparent regulatory regime<br>support the energy transition, instill long-term confidence for investors, and gives<br>developers the ability to unlock the low-cost, long-term, large-scale capital required to<br>support these types of projects.                                                                                                                               |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Will the project use energy from the grid?              | EVREC will develop, construct, and operate a wind to green ammonia project on the<br>brownfield site of the former Abitibi logging lands near Botwood, in Central<br>Newfoundland. We are structuring its design to use 100% renewable wind energy. The<br>Project is planning to utilize a grid connection to draw power (if available) for critical<br>loads or to provide power to support the local and provincial grid in times of need. |
| What are the risks in the manufacture of green ammonia? | Green ammonia is considered environmentally friendly but can still pose certain risks.<br>Accidental release during production, transportation, or storage could pose risks. EVREC<br>will be implementing the latest available technologically to ensure that proper safety<br>measures and emergency response plans are always in place.                                                                                                    |
| Does the green hydrogen process<br>require water?       | This project requires water for electrolysis and cooling. It is currently believed that the project will require similar levels of water consumption to those used historically on the project site and will be drawn from Peters Pond. Studies will remain ongoing through the development phase of the project and will be reported as part of the Environmental Impact Assessment.                                                         |
| What development is planned for the port?               | The port will be restored to its historical working condition to allow for inbound and outbound shipments. During the construction phase, a section of the port previously used by Abitibi will be upgraded to receive wind turbines and other materials required for the                                                                                                                                                                     |

|                                  | initial build. Botwood will have a fully operating international deep-water port as a result of the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Will you be hiring local talent? | <ul> <li>While it is not possible at this early stage in project development to firm up the exact job opportunities, they will be developed throughout the different project stages and will result in opportunities for various levels and skill sets. At this time, we expect the project construction and operation will require: <ul> <li>Project and construction managers</li> <li>Engineers (electrical, mechanical, civil, design, HVAC, chemical, process, laboratory)</li> <li>Control room operators</li> <li>Environmental specialists</li> <li>Crane and heavy machinery operators</li> <li>Wind techs (The College of the North Atlantic is offering this certification)</li> <li>Welders</li> <li>Electricians</li> <li>General Labour</li> </ul> </li> <li>If you are planning any type of training or future education, please consider these areas. Check on our website regularly as jobs will be posted as the project develops.</li> <li>We also anticipate a growth in the local economy indirectly created by EVREC in the hospitality industry, housing construction, retail development and professional services to the area.</li> </ul> |

| What effect will the building and<br>operation of a wind farm have on<br>local ecosystems? | EVREC is required by the Newfoundland Government to gather data and monitor all<br>environmental effects of the wind farm build and maintenance on local species and their<br>ecosystems- (avifauna, terrestrial reptiles, mammals, and fish). All information is gathered<br>from existing professional sources, government and academic studies, local knowledge,<br>field surveys and our own environmental monitoring. The final design will be influenced by<br>the data. We share with the community the concern for every piece of the ecological<br>puzzle.                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How was the EVREC site selected?                                                           | The Exploits Valley area boasts a world class wind resource; proximity to an existing deep-<br>water port; water availability; the topographical characteristics to enable a cost-effective<br>build; a stable government; a favorable fiscal framework; a defined regulatory pathway and<br>local support from community stakeholders who have known the area in more prosperous<br>times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| How can our community be<br>involved in the development of<br>the EVREC project?           | Community involvement in the development of any wind farm is crucial for addressing<br>local concerns, promoting transparency, and building trust and support for renewable<br>energy projects. This project is engaging the community through:<br>Public consultations and meetings<br>Stakeholder engagement<br>Educational initiatives<br>Land lease agreements<br>A community benefit agreement<br>Environmental impact assessments that will be openly shared<br>Developing job creation and training programs.<br>Community involvement in this wind farm development will require ongoing engagement<br>from project planning through construction, operation, and decommissioning. The<br>project is committed to effective engagement that will foster collaboration, build trust,<br>and ensure that the project aligns with the values and needs of the local community. |

| How is green ammonia produced?                                                          | Green ammonia is produced using renewable energy sources- in EVREC's case, wind turbines and solar will fuel the process. This electricity powers an electrolyzer, which splits water ( $H_2O$ ) into hydrogen ( $H_2$ ) and oxygen ( $O_2$ ). This process is known as electrolysis and results in the production of green hydrogen. This green hydrogen is then combined with nitrogen (extracted from the air) in a process known as air separation. The hydrogen and nitrogen are then combined to create green ammonia by a process (Haber-Bosch) which has been used for over 100 years and now has been adapted to be powered by sustainable energy. |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What are the environmental benefits of green ammonia?                                   | Green ammonia offers several environmental benefits compared to conventional<br>ammonia production methods because it has reduced greenhouse gas emissions. The key<br>environmental benefits of green ammonia are to reduce carbon emissions, mitigate the<br>impact of climate change, provide Canada with energy independence, improve air and<br>water quality, have non-polluting sustainable agriculture, conserve resources, and<br>promote a circular economy with the adoption of innovative technology.                                                                                                                                           |
| What happens at the end of the useful life of a wind turbine?                           | As turbines are dismantled, the components are repurposed, recycled, or disposed of in an environmentally responsible manner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| How does green ammonia<br>contribute to the decarbonization<br>of the ammonia industry? | Ammonia is a key component in fertilizers and chemicals and can now be used as a clean<br>energy carrier. Ammonia production is highly energy intensive and has traditionally been<br>produced using fossil fuels. In 2020, global ammonia production created approx. 450<br>million metric tons of carbon dioxide into the air- all of which can be eliminated by<br>producing it using green renewable energy.                                                                                                                                                                                                                                            |

| How is maintenance handled on a wind turbine?                           | Wind turbines undergo regular routine maintenance (visual inspections, lubrication of moving parts, monitoring of key performance indicators). Routine maintenance is essential to identify and address minor issues before they escalate. Predicative monitoring systems are often installed in turbines to continuously assess the condition of critical components. This includes vibration monitoring, oil analysis, and other sensors that provide real-time data on the health of the turbine. During the life of the turbine, periodic inspections, both internal and external, are scheduled to assess the condition of components that may not be easily visible during routine maintenance. These inspections help identify wear and tear and potential issues that may require corrective action. |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What applications does green ammonia have?                              | Green ammonia has diverse applications across various industries, leveraging its role as a clean and sustainable form of ammonia produced using renewable energy sources. The key applications of green ammonia are for fertilizer production, agriculture, chemical industry, a hydrogen carrier, fuel for power generation, fuel for the maritime and shipping industry, energy storage, hydrogen production, emission control and water treatment.                                                                                                                                                                                                                                                                                                                                                        |
| What are the economic<br>considerations of green ammonia<br>production? | The economic considerations in the production of green ammonia are: initial capital costs, operating and maintenance costs, cost of renewable energy, hydrogen production costs, feedstock costs, market prices for ammonia, government incentives and policies, carbon pricing and emission costs, market acceptance, access to funding, and lifecycle analysis and environmental externalities.                                                                                                                                                                                                                                                                                                                                                                                                            |
| What happens if there is an emergency on a Turbine?                     | In the event of an unexpected failure or emergency, wind farms have response plans in place to address and repair issues promptly. This can involve specialized teams trained for turbine rescues and repairs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| What is green ammonia?                                                  | Green ammonia is ammonia produced using renewable and sustainable energy sources.<br>The traditional process for producing ammonia involves the Haber-Bosch process, which<br>uses natural gas (methane) as a feedstock and a source of hydrogen. EVREC will be<br>powering this process using renewable wind energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| How is wildlife considered during the construction of a wind farm? | The impact of wind farms on wildlife is a topic that has been studied extensively, and it is essential to consider both the positive and negative aspects. While wind energy is a clean and renewable source of power, the installation and operation of wind farms can have various effects on local ecosystems and wildlife. The positive impacts of wind farms are that they vary from habitat preservation, reduced greenhouse gas emissions, limited air and water pollution. It is also important to note that the impact of wind farms on wildlife can vary depending on factors such as the location of the wind turbines, the species present, and the specific design and operation of the turbines. Site mitigation, proper environmental impact assessments, and ongoing monitoring are essential in minimizing negative effects on wildlife and optimizing the coexistence of wind energy and biodiversity. The Project and environmental agencies are working together to implement mitigation measures, such as proper siting, avian monitoring, and adaptive management practices, to address and minimize any potentially negative impacts of wind farms on wildlife |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the lifespan of a wind turbine?                            | The lifespan of a turbine (anywhere from 20 to 30 years or more) is influenced by the quality of the equipment, its operating environment and advancements in technology. The major components of a wind turbine are a tower, nacelle, blades, hub, gearbox, generator, and control systems. Each of these components has a specific lifespan, with some components potentially requiring replacement or major overhaul during the turbine's operational life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| What role does renewable energy play in green ammonia projects?    | Renewable energy plays a central and critical role in green ammonia production as it is<br>this use of renewable energy that distinguishes green ammonia from traditional<br>ammonia production, made with fossil fuels. The use of renewable energy sources<br>contributes to the environmental sustainability and lower carbon footprint of the entire<br>ammonia production process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| When the turbines enter the<br>decommissioning stage which will<br>take place many years down the<br>road, who is responsible for the<br>decommissioning and associated<br>costs? | Under the Crown Land Application, EVREC has the obligation of decommissioning all<br>assets. The types of work activities typically include removing or dismantling the asset.<br>For the EVREC Project, the various aspects of the implementation of the Asset<br>Retirement Obligation standard have been reviewed, and in doing so the underlying<br>requirements and issues that must be complied with have been fully addressed in the<br>planning stage. The Project has taken a very realistic approach in developing the plan,<br>which can be implemented to meet the future legislative requirements, and as such it<br>will be reviewed by the regulators through the permitting and approval process.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How does EVREC manage risk?                                                                                                                                                       | EVREC has implemented a culture of risk management. The Executive Team is<br>responsible for protocols to protect both the on-ground organization (community,<br>employees, the environment and assets), its shareholders' investment and the<br>reputation of the EVREC project.<br>Risk is evaluated by the probability of an occurrence providing a risk level ranging from<br>low to extreme. Mitigation strategies will then determine a residual risk rating.<br>Identified risks that are outside the organization's risk appetite will require<br>implementation of a risk transfer, reduction, elimination, or exploitation strategy to<br>reduce the residual risk level to as low as reasonably practicable.<br>Risks identified as high with an impact above a specified threshold will be reported to<br>Project Sponsors/Steering Committee. As the organization continues to grow, it is<br>committed to building increased awareness and a shared responsibility for risk<br>management at all levels of the organization. Creating a culture of careful monitoring and<br>observation by everyone is crucial to working in a truly safe environment. |

| What risks are associated with an ammonia plant and the transportation of ammonia? | Green ammonia, that will be produced through our process is considered environmentally<br>friendly, however it can still pose certain risks. Accidental releases during production,<br>transportation, or storage could pose risks. The project will be implementing best available<br>technologically to mitigate these releases and will ensure that proper safety measures and<br>emergency response plans will be implemented to mitigate these risks. It should be noted<br>that ammonia production units and the transportation of ammonia is very common, with<br>accidental releases causing harm being very rare. Industry, regulators, and the Project will<br>work collaboratively to ensure that robust safety measures, emergency response plans,<br>and sustainable practices are implemented and maintained. |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

To date, the project has demonstrated strong CSR support throughout the initial development and continues to have an active CSR campaign and community outreach. Key highlights to date: 1. Signed exclusive agreements with the Town of Botwood and Exploits Valley Port Corporation, 2. Successfully engaged the community through several meetings before the submission, which have garnered a noteworthy attendance of over 500 individuals. Most of the feedback received from attendees has been positive, indicating that the Project has an impactful and effective CSR Plan. We have also attended several co-sponsored information sessions with the Town of Botwood and have done several info sessions and get-togethers with the regional mayors from Exploits Valley and the staff. The active participation of community members and stakeholders in these meetings is a testament to the collaborative efforts being made towards executing the Project with support of the community, 3. Executed a Social License/MOU with the Qalipu Nation, which was signed and submitted with the proposal, and participated in numerous EVREC events and joint press releases, 4. The Project received an open letter of support signed by Have the First Nations in the area eight Mayors of the surrounding communities (Exploits Valley Region), addressed to been consulted through the initial Andrew Fury and the Minister of IET (Industry Energy and Technology). This was submitted development of the project? before the final decision was released on the bid, 5. A key differentiator that sets us apart from other awarded projects is that it is targeting an area in Central Newfoundland that has been the industrial heartland for many years. Over the past century, the region has seen several large industrial and employment bases shut down. Most of the land and infrastructure targeted by the Project are repurposed forestry sites that were once a significant driver of Newfoundland's economic engine, thanks to the Abitibi Consolidated Pulp and Paper Company. The communities in the region were historical "Company Towns", communities formed to support these industries, and they are excited to see a project that aims to revitalize such an important area and bring new opportunities back to the region. Many other projects are in small communities primarily based on fishing or other outdoor and touristic pursuits (not historically heavy industry) and have a different connotation to the lands being targeted for development. Central Newfoundland, through the Project's engagements, is focused on bringing back jobs to the region, and this is the main driver behind the local government and population support of the Project.

EVREC consulted with members and representatives of Qalipu First Nation and Qalipu Holdings, including the Ward Councilor and Exploits region Qalipu members. These discussions were expansive, leading to a Memorandum of Understanding which sets out how EVREC and Qalipu intend to work together to explore procurement, construction, employment, and economic opportunities. Furthermore, the discussions included planning for monitoring, mitigating, caring for, and avoiding areas of cultural spiritual significance, rare plants, waterways, wildlife habitat and other areas of interest. All concerns will be identified and addressed though a comprehensive environmental impact assessment, which includes environmental and socio-economic impacts. This process aligns with the Government of Newfoundland and Labrador consultation requirements with Qalipu First Nation, in which EVREC intends to comply with all guidelines and conditions for consultation and engagement, and any resulting development agreements. EVREC also recognizes there are people in the Exploits region who are not Qalipu members, but who have deep rooted, significant, and cultural, recreational, commercial, and natural connections with the land to be considered for the wind energy project. EVREC's ongoing consultation will continue to understand all interests, issues, concerns, and opportunities with all people in the Exploits area, and beyond. EVREC's intentions are to create a development that provides economic and social opportunities to support communities and future generations, with minimal impact on the environment.

Have the Qalipu First Nations been consulted on the project?
APPENDIX F EPP TABLE OF CONTENTS

Project # 24-10465

# TABLE OF CONTENTS

#### Page

| 1.0                   | INTRODUCTION |                                                        |
|-----------------------|--------------|--------------------------------------------------------|
| 2.0                   | ENVIE        | RONMENTAL PROTECTION PLAN OVERVIEW1                    |
| 2.1                   | Sco          | pe of the Environmental Protection Plan1               |
| 2.                    | .1.1         | Timing and Constraints1                                |
| 2.                    | .1.2         | Unforeseen Circumstances1                              |
| 2.2                   | Org          | anization and Use of the Environmental Protection Plan |
| 2.3                   | Mai          | ntenance of the Environmental Protection Plan1         |
| 3.0                   | RESP         | ONSIBILITIES & Training1                               |
| 3.1                   | Rol          | es & Responsibilities1                                 |
| 3.                    | .1.1         | Project Manager1                                       |
| 3.                    | .1.2         | Construction Manager1                                  |
| 3.1.3                 |              | Environmental Monitor1                                 |
| 3.                    | .1.4         | Other Personnel1                                       |
| 3.2                   | Tra          | ining & Orientation Requirements1                      |
| 3.                    | .2.1         | Records1                                               |
| 3.3                   | Cor          | nplaint Response Protocol1                             |
| 4.0                   | PROT         | ECTIVE MEASURES1                                       |
| 4.1                   | AIR          | QUALITY & DUST1                                        |
| 4.2                   | Gre          | enhouse Gas Emissions1                                 |
| 4.3                   | Bla          | sting1                                                 |
| 4.4                   | Geo          | phazards1                                              |
| 4.5                   | Gro          | undwater Wells1                                        |
| 4.6                   | Ero          | sion & Sediment Control1                               |
| 4.7                   | Sur          | face Water, Wetlands, Fish & Habitat1                  |
| 4.8                   | Ter          | restrial Plants & Lichen1                              |
| 4.9                   | Ter          | restrial Wildlife & Habitat1                           |
| 4.10                  | Avit         | auna & Bats1                                           |
| 4.11                  | Noi          | se Management1                                         |
| 4.12                  | Tra          | ffic Control1                                          |
| 4.13                  | Nor          | n-Hazardous Solid Waste Disposal1                      |
| 4.14                  | Cor          | ntaminant Prevention Plan1                             |
| 4.                    | .14.1        | Hazardous Materials & Waste Materials Management1      |
| 4.                    | .14.2        | Wastewater Management1                                 |
| 5.0 CONTINGENCY PLANS |              | INGENCY PLANS1                                         |
| 5.1                   | Spi          | I Control Plan2                                        |
| 5.                    | .1.1         | Prevention2                                            |
| 5.                    | .1.2         | Response Procedures2                                   |
| 5.1.3                 |              | Clean-up Procedures2                                   |
| 5.2                   | Fail         | ure of Erosion & Sedimentation Controls2               |
| 5.2.1                 |              | Prevention2                                            |
| 5.2.2                 |              | Response Procedures2                                   |



| 5.3  | Disc   | overy of Archaeological, Culture, or Heritage Resources | 2 |
|------|--------|---------------------------------------------------------|---|
| 5    | .3.1   | Response Procedures                                     | 2 |
| 5.4  | Fires  | 5                                                       | 2 |
| 5    | .4.1   | Prevention                                              | 2 |
| 5    | .4.2   | Response Procedures                                     | 2 |
| 6.0  | СОММ   | UNICATIONS                                              | 2 |
| 6.1  | Con    | tact List                                               | 2 |
| 6.2  | Incic  | lent Reporting                                          | 2 |
| 7.0  | NOTIF  |                                                         | 2 |
| 8.0  | SITE V | ISITORS                                                 | 2 |
| 9.0  | CLOS   | JRE                                                     | 2 |
| 10.0 | STATE  | EMENT OF QUALIFICATIONS AND LIMITATIONS                 | 2 |
| 11.0 | REFE   | RENCES                                                  | 2 |
|      |        |                                                         |   |

#### LIST OF TABLES

To be Determined

## **LIST OF FIGURES**

To be Determined

## LIST OF APPENDICES

To be Determined



# 1.0 INTRODUCTION

## 2.0 ENVIRONMENTAL PROTECTION PLAN OVERVIEW

- 2.1 Scope of the Environmental Protection Plan
- 2.1.1 Timing and Constraints
- 2.1.2 <u>Unforeseen Circumstances</u>
- 2.2 Organization and Use of the Environmental Protection Plan
- 2.3 Maintenance of the Environmental Protection Plan

# 3.0 **RESPONSIBILITIES & TRAINING**

#### 3.1 Roles & Responsibilities

- 3.1.1 Project Manager
- 3.1.2 Construction Manager
- 3.1.3 Environmental Monitor
- 3.1.4 Other Personnel
- 3.2 Training & Orientation Requirements
- 3.2.1 Records
- 3.3 Complaint Response Protocol

#### 4.0 **PROTECTIVE MEASURES**

- 4.1 Air Quality & Dust
- 4.2 Greenhouse Gas Emissions
- 4.3 Blasting
- 4.4 Geohazards
- 4.5 Groundwater Wells
- 4.6 Erosion & Sediment Control
- 4.7 Surface Water, Wetlands, Fish & Habitat
- 4.8 Terrestrial Plants & Lichen
- 4.9 Terrestrial Wildlife & Habitat
- 4.10 Avifauna & Bats
- 4.11 Noise Management
- 4.12 Traffic Control
- 4.13 Non-Hazardous Solid Waste Disposal
- 4.14 Contaminant Prevention Plan
- 4.14.1 Hazardous Materials & Waste Materials Management
- 4.14.2 Wastewater Management

# 5.0 CONTINGENCY PLANS



#### 5.1 Spill Control Plan

- 5.1.1 Prevention
- 5.1.2 <u>Response Procedures</u>
- 5.1.3 <u>Clean-up Procedures</u>
- 5.2 Failure of Erosion & Sedimentation Controls
- 5.2.1 Prevention
- 5.2.2 <u>Response Procedures</u>
- 5.3 Discovery of Archaeological, Culture, or Heritage Resources
- 5.3.1 <u>Response Procedures</u>
- 5.4 Fires
- 5.4.1 <u>Prevention</u>
- 5.4.2 <u>Response Procedures</u>

# 6.0 COMMUNICATIONS

- 6.1 Contact List
- 6.2 Incident Reporting

## 7.0 NOTIFICATION

## 8.0 SITE VISITORS

## 9.0 CLOSURE

# **10.0 STATEMENT OF QUALIFICATIONS AND LIMITATIONS**

#### **11.0 REFERENCES**

